Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe the influence of membrane heterogeneity on the adsorption and diffusion of DNA. Cellular membranes are believed to contain domains (lipid rafts) that influence processes ranging from signal transduction to the diffusion of membrane components. By analogy, we demonstrate that the formation of raft-like domains in supported lipid bilayers provides control over the adsorption and diffusion of DNA. The formation of bilayers from a mixture of the gel phase zwitterionic lipid 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) and the fluid phase cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) yielded coexisting DSPC-enriched and DOTAP-enriched phases. We demonstrated the ability to pattern the adsorption of DNA on the heterogeneous bilayers, with the adsorption being restricted to the DOTAP-enriched phase. We further demonstrated that the DSPC-enriched domains acted as obstacles to the lateral diffusion of adsorbed DNA. Fluorescence recovery after photobleaching (FRAP) analysis revealed that the diffusivity of the adsorbed DNA tracked that of the underlying lipid, although the lipid diffusivity changed by an order of magnitude with changes in bilayer composition. Fundamental insight into the adsorption and diffusion of DNA on heterogeneous surfaces may be useful for the design of novel techniques for the size-based separation of DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la902222g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!