Some highly efficient enzymes, e.g., acetylcholinesterase, use gating as a tool for controlling the rate by which substrates access their active site to direct product formation. Mastering gated molecular encapsulation could therefore be important for manipulating reactivity in artificial environments, albeit quantitative relationships that describe these processes are unknown. In this work, we examined the interdependence between the thermodynamics (DeltaG(o)) and the kinetics (DeltaG(in)(double dagger) and DeltaG(out)(double dagger)) of encapsulation as mediated by gated molecular basket 1. For a series of isosteric guests (2-6, 106-107 A(3)) entering/exiting 1, we found a linear correlation between the host-guest affinities (DeltaG(o)) and the free energies of the activation (DeltaG(in)(double dagger) and DeltaG(out)(double dagger)), which was fit to the following equation: DeltaG(double dagger) = rhoDeltaG(o) + delta. Markedly, the kinetics for the entrapment of smaller guest 7 (93 A(3)) and bigger guest 8 (121 A(3)) did not follow the free energy trends observed for 2-6. Thus, it appears that the kinetics of the gated encapsulation mediated by 1 is a function of the encapsulation's favorability (DeltaG(o)) and the guest's profile. When the size/shape of guests is kept constant, a linear dependence between the encapsulation potential (DeltaG(o)) and the rate of guests' entering/departing basket (DeltaG(in/out)(double dagger)) holds. However, when the potential (DeltaG(o)) is fixed, the basket discriminates guests on the basis of their size/shape via dynamic modulation of the binding site's access.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja908436c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!