A new catalyst system for the intramolecular acylation of aldehydes with aryl bromides via C-H functionalization is described. The transformation is distinguished by a remarkable functional group tolerance and hence allows for the synthesis of a wide variety of highly functionalized benzocyclobutenones with a diverse set of substitution patterns from simple and easily accessible precursors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja909811t | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
Background: Recently, pyrido[2,3-] pyrimidine, triazolopyrimidine, thiazolopyrimidine, quinoline, and pyrazole derivatives have gained attention due to their diverse biological activities, including antimicrobial, antioxidant, antitubercular, antitumor, anti-inflammatory, and antiviral effects.
Objective: The synthesis of new heterocyclic compounds including 5-quinoline-pyrido[2,3-] pyrimidinone (-, , -), 6-quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidinone (, , -), 1,2,4-triazole-6-quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidinone (-), and pyrido[2,3-]thiazolo[3,2-]pyrimidine-ethyl-(pyridine)-9-thiaazabenzo[]azulenone () derivatives was performed with high yields while evaluating antimicrobial activities.
Methods: A new series of quinoline-pyrido[2,3-]thiazolo[3,2-]pyrimidine derivatives were prepared using a modern style and advanced technology, resulting in high yields of these new compounds.
Int J Mol Sci
December 2024
Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.
Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the quantity of UV-absorbing compounds such as flavonoids.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
Acylation stands as a fundamental process in both biological pathways and synthetic chemical reactions, with acylated saccharides and their derivatives holding diverse applications ranging from bioactive agents to synthetic building blocks. A longstanding objective in organic synthesis has been the site-selective acylation of saccharides without extensive pre-protection of alcohol units. In this study, we demonstrate that by simply altering the chirality of N-heterocyclic carbene (NHC) organic catalysts, the site-selectivity of saccharide acylation reactions can be effectively modulated.
View Article and Find Full Text PDFJ Nat Med
December 2024
School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, 861-2205, Japan.
Ipomoea alba L. (Convolvulaceae) is an annual vine native to tropical America that is cultivated primarily for ornamental purposes. Its seeds are used in traditional medicine as a laxative, and young shoots are consumed as food.
View Article and Find Full Text PDFJ Org Chem
January 2025
Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 804201, Taiwan.
This paper presents a copper(I)-catalyzed intramolecular tandem acylation/-arylation of methyl 2-[2-(2-bromophenyl)acetamido]benzoates for the synthesis of benzofuro[3,2-]quinolin-6(5)-ones under mild conditions. The combination of CuI, 1,10-phenanthroline, and KCO in DMSO was found to be the optimal reaction condition, producing the target products in high yields (84-99%) at 70 °C for 16 h. The tandem reaction was applicable to substrates bearing halo, electron-withdrawing, and electron-donating groups at their phenyl moieties with a broad substrate scope.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!