Nine natural populations of the rare evergreen tree Magnolia cathcartii (Magnoliaceae) were sampled across its natural range, and amplified fragment length polymorphism (AFLP) markers were used to assess genetic variation within and among populations. Three ex situ populations were also surveyed to determine whether conservation plantings include the entire genetic diversity of the species. Genetic diversity within the natural populations was very low (0.122 for Nei's gene diversity), and the southeast populations had the highest diversity. The ex situ populations had a lower diversity than the mean diversity for all populations, and none of the ex situ populations reached the levels of diversity found in their source populations. Genetic differentiation was high among natural populations (G st = 0.247), and an isolation-by-distance pattern was detected. Habitat fragmentation, restricted gene flow, and geitonogamy are proposed to be the primary reasons for the low genetic diversity and high genetic differentiation. More protection is needed, especially for the southeast populations, which possess the highest numbers of unique alleles according to AFLP fragment analyses. The ex situ program was a good first step towards preserving this species, but the current ex situ populations preserve only a limited portion of its genetic diversity. Future ex situ efforts should focus on enhancing the plantings with individuals from southeastern Yunnan.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10265-009-0278-9DOI Listing

Publication Analysis

Top Keywords

situ populations
16
genetic diversity
16
populations
13
natural populations
12
diversity
9
genetic
8
genetic variation
8
magnolia cathcartii
8
cathcartii magnoliaceae
8
rare evergreen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!