A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of a novel, trastuzumab resistant human breast cancer cell line. | LitMetric

Characterization of a novel, trastuzumab resistant human breast cancer cell line.

Front Biosci (Elite Ed)

Department of Biophysics and Cell Biology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.

Published: January 2010

HER2-positive breast cancers represent a distinct phenotype and are intrinsically more aggressive than HER2-negative tumors. Although HER2-targeted therapies have been rationally developed, resistance to these treatments represents a process understood poorly. There are few experimental models that allow studying the molecular mechanism of resistance. Our aim was to characterize a trastuzumab resistant breast cancer cell line (B585) that was established from an invasive ductal carcinoma. B585 grows only in immunodeficient mice as a xenograft. CGH and FISH were used to define cytogenetic alterations, gene-expression analysis and immunohistochemistry were applied to detect RNA and protein expression. By array-CGH focused amplifications were identified for C-MYC, EGFR, ErbB2, CCND1 and TOP2-A oncogenes. ErbB2 was co-amplified with TOP2-A. mRNA overexpression was detected for the amplified genes. ErbB2 protein was overexpressed and showed heterogeneous distribution. In summary, molecular cytogenetic analysis and expression profiling of B585 revealed several new alterations. Based on the experiments performed in SCID mice and the genotypic/phenotypic characteristics, this new in vivo breast cancer xenograft is a valuable model to investigate molecular mechanism of trastuzumab resistance.

Download full-text PDF

Source
http://dx.doi.org/10.2741/e119DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
trastuzumab resistant
8
cancer cell
8
molecular mechanism
8
characterization novel
4
novel trastuzumab
4
resistant human
4
breast
4
human breast
4
cell her2-positive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!