Biological tests demonstrated that the inactivation of Nosema bombycis (N. bombycis) spores by chlorine dioxide (ClO(2)) occurs very fast and is highly sensitive. The lowest effective inactivation dosage and time was 15mg/mL for 30min. The inactivation of spores was additionally verified by using double color fluorescence stain and spore germination testing. A series of biological changes, including a large number of substrates that were leaked out from the spores included proteins, DNA, polysaccharide, K(+), and Ca(2+), occurred a short time after N. bombycis spores were treated with ClO(2). In addition, the lipid of spores was disrupted and ATPase activity was inhibited, which resulted in the destruction of the inner structure of the spores.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jip.2009.11.007DOI Listing

Publication Analysis

Top Keywords

chlorine dioxide
8
nosema bombycis
8
bombycis spores
8
spores
6
inactivation
4
inactivation mechanisms
4
mechanisms chlorine
4
dioxide nosema
4
bombycis
4
bombycis biological
4

Similar Publications

Introduction: Opportunistic infections (IO) are infections of microbiota (fungi, viruses, bacteria, or parasites) that generally do not cause disease but turn into pathogens when the body's defense system is compromised. This can be triggered by various factors, one of which is due to a weakened immune system due to Diabetes Mellitus (DM), which increases the occurrence of opportunistic infections, especially in the oral cavity. Fungal (oral candidiasis) and viral (recurrent intraoral herpes) infections can occur in the oral cavity of DM patients.

View Article and Find Full Text PDF

Chlorine dioxide (ClO) is a powerful disinfectant widely regarded as a safe and effective hygienic agent in pharmaceutical plants and other manufacturing facilities that require sterility. However, the efficacy of low concentrations of ClO gas on sterilizing spore-forming bacteria remains uncertain. In this study, we investigated the optimal conditions for disinfection of spore-forming bacteria with low concentrations of ClO gas using biological indicators.

View Article and Find Full Text PDF

Development and Assessment of a Color-Variable Chlorine Dioxide Slow-Releasing Card for Litchi Preservation.

Foods

January 2025

Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510641, China.

Chlorine dioxide (ClO) gas has attracted considerable attention due to its safety and efficiency. In this study, we successfully developed a color-variable ClO slow-releasing card for postharvest litchi. The optimal ClO slow-releasing card was prepared as follows: Card A was soaked in 2.

View Article and Find Full Text PDF

Control of rotavirus by sequential stress of disinfectants and gamma irradiation in leafy vegetable industry.

Food Res Int

January 2025

Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea. Electronic address:

Rotavirus (RV) causes severe gastroenteritis in infants and young children worldwide. Fresh produce has been reported as a source of RV infection during production and harvesting, leading to foodborne illness. Cases of contamination from contact surfaces have also been reported.

View Article and Find Full Text PDF

Considering the demand for organosulfur materials and the challenges associated with currently used oxidation processes, in this study, we evaluated the counter-cation of sodium chlorite (Na+ClO2-) with tetrabutylammonium chloride (Bu4N+Cl-) to synthesise tetrabutylammonium chlorite (Bu4N+ClO2-). Bu4N+ClO2- exhibited good solubility in organic solvents like chloroform (1.6 g mL-1) and ethyl acetate (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!