Bmi-1, a member of the Polycomb family of transcriptional repressors, is essential for maintaining the self-renewal abilities of adult stem cells. Bmi-1 has been demonstrated to play a role in tumorigenesis in head and neck squamous cell carcinomas (HNSCCs). A recent study has further suggested that ALDH1 may be considered to be a putative marker for HNSCC-derived cancer stem cells. However, the role that Bmi-1 plays in HNSCC-derived ALDH1-positive cells (HNSCC-ALDH1(+)) has yet to be determined. In this study, we demonstrated that HNSCC-ALDH1(+) cells possess tumor initiating properties, are capable of self-renewal, and express higher levels of Bmi-1 as compared to HNSCC-ALDH1(-) cells. To further explore the functional role of Bmi-1 in HNSCC-ALDH1(+) cells, we used a lentiviral vector expressing shRNA to knock down Bmi-1 expression (sh-Bmi-1) in HNSCC-ALDH1(+) cells. Silencing of Bmi-1 significantly enhanced the sensitivity of HNSCC-ALDH1(+) cells to chemoradiation and increased the degree of chemoradiation-mediated apoptosis that occurred. Importantly, knockdown of Bmi-1 increased the effectiveness of radiotherapy and led to the inhibition of tumor growth in nude mice transplanted with HNSCC-ALDH1(+) cells. Kaplan-Meier survival analysis indicated that the mean survival rate of HNSCC-ALDH1(+) tumor-bearing immunocompromised mice treated with radiotherapy was significantly improved by treatment with sh-Bmi-1 as well. In summary, these results suggest that Bmi-1 is a potential target for increasing the sensitivity of HNSCC cancer stem cells to chemoradiotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.oraloncology.2009.11.007 | DOI Listing |
J Pathol
March 2011
Department of Dentistry and Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.
MicroRNA-200c (miR200c) is emerging as an important regulator of tumourigenicity and cancer metastasis with a strong capacity for inducing epithelial-mesenchymal transitions. However, the role of miR200c in head and neck squamous cell carcinoma (HNSCC) and HNSCC-associated cancer stem cells (HNSCC-CSCs) is unknown. In this study, the expression of miR200c in the regional metastatic lymph node of HNSCC tissues was significantly decreased, but BMI1 expression was increased as compared to parental tumours.
View Article and Find Full Text PDFJ Oncol
July 2011
Institute of Oral Biology and Biomaterial Science, Chung-Shan Medical University, Taichung 40201, Taiwan.
Recent studies suggest that ALDH1 is a putative marker for HNSCC-derived cancer stem cells. However, the regulation mechanisms that maintain the stemness and metastatic capability of HNSCC-ALDH1(+) cells remain unclear. Initially, HNSCC-ALDH1(+) cells from HNSCC patient showed cancer stemness properties, and high expression of Bmi1 and Snail.
View Article and Find Full Text PDFOral Oncol
March 2010
Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
Bmi-1, a member of the Polycomb family of transcriptional repressors, is essential for maintaining the self-renewal abilities of adult stem cells. Bmi-1 has been demonstrated to play a role in tumorigenesis in head and neck squamous cell carcinomas (HNSCCs). A recent study has further suggested that ALDH1 may be considered to be a putative marker for HNSCC-derived cancer stem cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2009
Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taiwan.
Aldehyde dehydrogenase 1 (ALDH1) has been considered to be a marker for cancer stem cells. However, the role of ALDH1 in head and neck squamous cell carcinoma (HNSCC) has yet to be determined. In this study, we isolated ALDH1-positive cells from HNSCC patients and showed that these HNSCC-ALDH1+ cells displayed radioresistance and represented a reservoir for generating tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!