Under defined laboratory conditions, Naegleria gruberi undergo an amoeba-to-flagellate differentiation. During this differentiation, N. gruberi changes its shape from an amorphous amoeba to a regular shaped flagellate and forms de novo a flagellar apparatus, which is composed of two basal bodies, two flagella, a flagellar rootlet, and cytoplasmic microtubules. The entire process is accomplished within 2h after initiation of differentiation and more than 95% of cells in the population undergo this differentiation. This rapid and synchronous differentiation of N. gruberi provides us with a unique system in which we can study the process of de novo basal body assembly. In this review, I summarize recent findings associated with de novo basal body assembly and propose a hypothesis to explain how N. gruberi assemble two basal bodies per cell, which is what happens in the majority of cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semcdb.2009.12.009 | DOI Listing |
Genetic studies on the protist, provide a glimpse into the unexpectedly rich world of intracellular patterning that unfolds within the ciliate cell cortex. Ciliate pattern studies provide a useful counterpoint to animal models of pattern formation in that the unicellular model draws attention away from fields of cells (or nuclei) as the principal players in the metazoan pattern paradigm, focusing instead on fields of ciliated basal bodies serving as sources of positional information. In this study, we identify , a Polo kinase of , that serves as an important factor driving global, circumferential pattern.
View Article and Find Full Text PDFDisaster Med Public Health Prep
January 2025
Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
Mortality rate of the crush victims in the Marmara earthquake of August 1999 was compared with the conclusions arrived after making thermodynamic assessment of the data acquired in the previous earthquakes. Entropic age concept was found very helpful while assessing the data. Mortality rate in the age group of 0-9 years old crush victims was 0 because the basal metabolic rate (BMR) of these children was low.
View Article and Find Full Text PDFBMC Neurol
December 2024
Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disease with a characteristic pathological feature of eosinophilic hyaluronan inclusions in the nervous system and internal organs. The identification of GGC-repeat expansions in the Notch 2 N-terminal like C (NOTCH2NLC) gene facilitates the accurate diagnosis of NIID. Due to its rareness and high clinical heterogeneity, the diagnosis of NIID is often delayed or missed.
View Article and Find Full Text PDFBMJ Case Rep
December 2024
Pediatrics, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, Odisha, India.
Foreign body (FB) aspiration in children is a common emergency. Traditionally, rigid bronchoscopy has been considered to be the mainstay for removal. However, in certain cases, flexible bronchoscopy can prove to be a better option and avoid thoracic surgery and unnecessary morbidity.
View Article and Find Full Text PDFCells
November 2024
Department of Life Sciences, University of Bath, Building 4 South, Bath BA2 7AY, UK.
Talpid3 is a basal body protein required for the formation of primary cilia, an organelle involved in signal transduction. Here, we asked if Talpid3 has a role in the regulation of differentiation and/or self-renewal of ES cells and whether cells lacking cilia due to a deletion in Talpid3 can be reprogrammed to induced pluripotent stem (iPS) cells. We show that mouse embryonic limb fibroblasts which lack primary cilia with a targeted deletion in the () gene can be efficiently reprogrammed to iPS cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!