The interaction of epidermal growth factor (EGF) with cell surface receptors and their subsequent endocytosis in isolated rat hepatocytes were analyzed by measuring changes in the concentrations of cell surface-bound, internalized, and degraded EGF. The kinetic model proposed by Wiley and Cunningham (Cell 25: 433-440, 1981) and Gex-Fabry and Delisi [Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R768-R779, 1984] was basically utilized for the model analysis. The following kinetic parameters were obtained: association and dissociation rate constants for EGF-receptor interaction, internalization rate constant for EGF-receptor complex (kappa e), internalization rate constant for free receptor (kappa t), sequestration rate constant (kappa s) of the complex from shallow (exchangeable) to deep (nonexchangeable) membraneous compartment, intracellular degradation rate constant and initial cell-surface receptor density. The kappa s value, which was obtained by analyzing the time profiles of EGF association with cells, was approximately 5-10 times larger than the kappa e value determined by directly measuring internalized EGF with the acid-washing technique. This suggests the necessary presence of deep (nonexchanging) compartment of the complex in the plasma membrane. The calculated kappa e value is at least several times larger than the kappa t value, yielding the kinetic basis for the occurrence of receptor downregulation induced by excess EGF. We conclude that, in the overall receptor-mediated processing of EGF after bound to the cell surface receptors, the dissociation process is rapid [half-time (t1/2) less than 1 min], the degradation process is much slower (t1/2 approximately equal to 3 h), and the receptor internalization process is intermediate (t1/2 approximately equal to 6-7 min). In addition, two pools for EGF-receptor complex in the plasma membrane seem to be present, although their identification cannot be made.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.1991.260.3.C457DOI Listing

Publication Analysis

Top Keywords

rate constant
16
epidermal growth
8
growth factor
8
isolated rat
8
rat hepatocytes
8
cell surface
8
surface receptors
8
internalization rate
8
egf-receptor complex
8
times larger
8

Similar Publications

For paediatric patients suffering from neurofibromatosis, Selumetinib (SEL) is the only approved drug. Here an original ecofriendly and high pace method is introduced using 96- microwell spectrophotometric assay (MW-SPA) to measure SEL content in bulk and commercial pharmaceutical formulation (Koselugo capsules). This assay was relied on in-microwell formation of a coloured charge transfer complex (CTC) upon interaction of SEL with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).

View Article and Find Full Text PDF

Introduction: The infrapatellar fat pad and synovium are the sites of immune cell infiltration and the origin of proinflammation. Studies have shown that Hoffa's synovitis may be a sign of early-stage osteoarthritis (OA). However, there have been no effective interventions specifically for Hoffa's synovitis.

View Article and Find Full Text PDF

Bloodstream infection in neonates is a complicated disease and presents a major challenge both in diagnosis and in therapeutic intervention. The focus of the present study was to investigate the incidence, the species distribution and the risk factors associated with mortality of bloodstream infections in a neonatal intensive care unit (NICU) and evaluating the antifungal susceptibility of traditional antifungal drugs and three nanoparticle-based drug delivery systems based on nanoparticles. A total of 458 patients were evaluated, and 9.

View Article and Find Full Text PDF

Biokinetic models can optimise pollutant degradation and enhance microbial growth processes, aiding to protect ecosystem protection. Traditional biokinetic approaches (such as Monod, Haldane, etc.) can be challenging, as they require detailed knowledge of the organism's metabolism and the ability to solve numerous kinetic differential equations based on the principles of micro, molecular biology and biochemistry (first engineering principles) which can lead to discrepancies between predicted and actual degradation rates.

View Article and Find Full Text PDF

Risks and rates, and the mathematical link between them.

Eur J Epidemiol

January 2025

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, H3A 1G1, Canada.

The risk over a given time span can be calculated as one minus the exponentiated value of the negative of the integral of the incidence density function (or hazard rate function) over that time span. This relationship is widely used but, in the few instances where textbooks have presented it, the derivations of it tend to be purely mathematical. I first review the historical contexts, definitions, distinctions and links.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!