Deficits in sensory-specific devaluation task performance following genetic deletions of cannabinoid (CB1) receptor.

Learn Mem

Neurogenetics and Behavior Center, Department of Psychological & Brain Sciences, The Johns Hopkins University, Baltimore, Maryland 21218, USA.

Published: January 2010

Cannabinoid CB1 receptor is abundantly expressed throughout the CNS and is implicated in numerous physiological and behavioral functions, including appetite and feeding. In the present study, wild-type and CB1 heterozygous and homozygous knockout mice were tested on an instrumental outcome-selective devaluation task to assess changes in acquired instrumental response levels for a distinct food reward following selective satiation. Deletion of CB1 receptor, as well as reduction in CB1 expression (HET), produced deficits in outcome-selective instrumental devaluation. These results identify a critical role for CB1 receptor in the ability of animals to represent, update, and/or use sensory-specific outcome representations to alter appetitive behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1101/lm.1610510DOI Listing

Publication Analysis

Top Keywords

cb1 receptor
16
devaluation task
8
cannabinoid cb1
8
cb1
6
deficits sensory-specific
4
sensory-specific devaluation
4
task performance
4
performance genetic
4
genetic deletions
4
deletions cannabinoid
4

Similar Publications

Neuroprotective Actions of Cannabinoids in the Bovine Isolated Retina: Role of Hydrogen Sulfide.

Pharmaceuticals (Basel)

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.

Both hydrogen sulfide and endocannabinoids can protect the neural retina from toxic insults under in vitro and in vivo conditions. The aim of the present study was two-fold: (a) to examine the neuroprotective action of cannabinoids [methanandamide and 2-arachidonyl glycerol (2-AG)] against hydrogen peroxide (HO)-induced oxidative damage in the isolated bovine retina and (b) to evaluate the role of endogenously biosynthesized hydrogen sulfide (HS) in the inhibitory actions of cannabinoids on the oxidative stress in the bovine retina. Isolated neural retinas from cows were exposed to oxidative damage using HO (100 µM) for 10 min.

View Article and Find Full Text PDF

2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.

View Article and Find Full Text PDF

Semi-Synthesis of Dimeric Cannabidiol Derivatives and Evaluation of their Affinity at Neurological Targets.

J Nat Prod

January 2025

Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States.

Cannabidiol (CBD) is a natural product associated with a wide range of biological and therapeutic activities. Despite the widespread cultural acceptance of CBD as a medicinal agent, much remains to be determined regarding its precise mechanism(s) of action in treating multiple conditions. CBD has been shown to promiscuously interact with several neurological targets with varying affinities.

View Article and Find Full Text PDF

Evidence indicates a bidirectional link between depressive symptoms and neuroinflammation. This study evaluated chronic cannabidiol (CBD) treatment effects in male and female rats subjected to the unpredictable chronic mild stress (UCMS) model of depression. We analyzed the gene expression related to neuroinflammation, cannabinoid signaling, estrogen receptors, and specific microRNAs in the ventromedial prefrontal cortex (vmPFC), CA1, and ventral subiculum (VS).

View Article and Find Full Text PDF

Metastasizing cancer cells surreptitiously can adapt to metabolic activity during their invasion. By initiating their communications for invasion, cancer cells can reprogram their cellular activities to initiate their proliferation and migration and uniquely counteract metabolic stress during their progression. During this reprogramming process, cancer cells' metabolism and other cellular activities are integrated and mutually regulated by tunneling nanotube communications to alter their specific metabolic functional drivers of tumor growth and progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!