Isolation, structure, and characterization of the putative soluble amyloses from potato, wheat, and rice starches.

Carbohydr Res

Laboratory of Carbohydrate Chemistry and Enzymology, Department of Biochemistry, Biophysics, and Molecular Biology, 4252 Molecular Biology Bldg., Iowa State University, Ames, IA 50011, USA.

Published: February 2010

Amylose, a putative linear alpha-(1-->4)-glucan and a component of most starches, was isolated from potato, rice, and wheat starches by forming the 1-butanol complex in a solution of the starches. It previously had been found that these amyloses were incompletely hydrolyzed by beta-amylase, indicating that it was partially branched. Solubilization of the butanol complex in water and steam distillation of the 1-butanol, followed by cooling to 4 degrees C gave precipitation of the double helical, linear, retrograded amylose over a 15 h period, leaving the soluble amylose in solution. The soluble amyloses were precipitated with two volumes of ethanol, and the precipitate was solubilized and reprecipitated to remove traces of linear amylose. The precipitated, soluble amyloses, were partially branched and had properties intermediate between linear amylose and amylopectin. The water solubility of the potato amylose was 10.52 mg/mL, with a number-average degree of polymerization (DP(n)) of 8440 and 2.1% branch linkages that had a DP(n) of 48; the water solubility of the rice amylose was 8.83 mg/mL, with a DP(n) of 2911 and 1.4% branch linkages that had a DP(n) of 72; and the water solubility of wheat amylose was 6.33 mg/mL, with a DP(n) of 1160 and 1.6% branch linkages that had a DP(n) of 64. The three soluble amyloses have structures and properties intermediate between the nearly water insoluble (

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2009.11.021DOI Listing

Publication Analysis

Top Keywords

soluble amyloses
16
water solubility
12
branch linkages
12
linkages dpn
12
amylose
8
partially branched
8
linear amylose
8
properties intermediate
8
dpn water
8
mg/ml dpn
8

Similar Publications

The protracted and immoderate utilization of chemical fertilizers has been detrimental to the composition of fungi in the soil and quality of crops. To ameliorate the adverse effects, a 6-year positioning experiment was undertaken to investigate the impact of substituting 0 % (CF), 25 % (M25), 50 % (M50), 75 % (M75), and 100 % (M100) of 225 kg ha chemical fertilizer nitrogen with manure nitrogen on both soil fungi and maize quality. This study showed that the expansion of Aspergillus heterocaryoticus, Xerochrysium dermatitidis, and Aspergillus penicillioides contributed to heightened levels of amylose and soluble sugars.

View Article and Find Full Text PDF

Domesticated highland barley is an important starch reserve and has differently colored grains, owing to different genotype backgrounds and cultivation environments. In this study, black, purple, blue, and yellow highland barley varieties were planted under the same cultivation conditions, and their starch distribution, structural characteristics, and physicochemical properties were analyzed. The apparent amylose content was highest in the purple variety (20.

View Article and Find Full Text PDF

This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.

View Article and Find Full Text PDF

This study evaluated the effects of malic acid vacuum microwave preconditioning (MVMP) on lotus root (LR) by examining its moisture content, dielectric properties, microstructure, and starch characteristics, including modifications in starch structure and composition. Dielectric properties and LF-NMR indicated that the dielectric constant (ε') was closely associated to moisture content and state, while changes in water migration depended on microwave power and the dielectric loss factor (ε″). Increased microwave power and malic acid concentration resulted in microstructural damage (indentation and breakage of starch granules) and starch hydrolysis into smaller particles.

View Article and Find Full Text PDF

Native banana starch (NS) has few limitations, such as poor solubility, low resistance to shear, temperature, and inconsistent retrogradation. This study investigates the effects of mono (α-amylase, pullulunase) and sequential enzymatic modifications of NS along with the application of ultrasound to enhance its functional attributes. Starch modified with α-amylase alone and along with ultrasound resulted the lowest amylose (20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!