A library of genomic DNA fragments of Pseudomonas syringae pv. tomato DC3000 was constructed in a lacZalpha-containing plasmid, pBS29. The library was used in a preliminary alpha-complementation-based screen to identify clones with promoter activity in Escherichia coli. Ten positive clones were sequenced and their locations in the chromosomal DNA of DC3000 strain were mapped. Five positive clones (P2, P3, P4, P6 and P8) were further assayed for promoter activity in three polyhydroxyalkanoate-producing pseudomonads: Pseudomonas resinovorans, P. corrugata and P. chlororaphis. To this end, a green-fluorescent-protein gene (gfp) was cloned downstream from the putative (DC3000) promoter in a shuttle plasmid. We found that only Pseudomonas transformants harboring the gfp-containing plasmid driven by putative promoter P2 showed fluorescence, indicating that this promoter is functioning in the three tested pseudomonads. Results of an in silico analysis of the P2 sequence further support the assignment of P2 as a bona fide promoter by the localization of putative -10 and -35 promoter regions and a transcription-factor-binding site, rpoD17, in this sequence. We successfully applied promoter P2 to drive the expression in P. chlororaphis of a recombinant alpha-galactosidase gene of Streptomyces coelicolor, which should be useful for the utilization of oligosaccharides of soy molasses for the production of polyhydroxyalkanoate biopolymer or rhamnolipid biosurfactant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2009.12.003 | DOI Listing |
Curr Res Microb Sci
November 2024
Microbiology and Plant Pathology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, Rajasthan, India.
Medicinal plants exhibited great role in drug industries. Herbal medicines and their derivative products are often prepared from crude plant extracts. and both are belonging to Asteraceae family and these plants are ethnomedicinally important due to their utilization as traditional medicine to cure various diseases.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark.
The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Ice-nucleating proteins (INPs) from bacteria like are among the most effective ice nucleators known. However, large INP aggregates with maximum ice nucleation activity (at approximately -2 °C) typically account for less than 1% of the overall ice nucleation activity in bacterial samples. This study demonstrates that polyols significantly enhance the assembly of INPs into large aggregates, dramatically improving bacterial ice nucleation efficiency.
View Article and Find Full Text PDFACS Nano
December 2024
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
Induction of systemic acquired resistance (SAR) in plants to control bacterial diseases has become an effective solution to the problems of agrochemical resistance and ecological environment damage caused by long-term and large-scale use of traditional bactericides. However, current SAR-inducing compounds are often unable to rapidly eliminate pathogenic bacteria in infected plant tissues to prevent further spread of the disease, severely restraining the potential for extensive application in agriculture. Herein, we address the limitations by developing a series of visible-light-absorbing aggregation-induced emission photosensitizers suitable for agricultural use.
View Article and Find Full Text PDFMol Plant Pathol
December 2024
Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
In Arabidopsis thaliana, the transcription factors WRKY7, WRKY11 and WRKY17 act as negative defence regulators against Pseudomonas syringae pv. tomato (Pst) DC3000. However, their coordinated regulation of gene expression has yet to be fully explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!