We report the first mid-infrared observation of vibrational circular birefringence (VCB) arising from individual chiral molecules. VCB can also be called vibrational optical rotatory dispersion (VORD) and is the Kramers-Kronig transform of vibrational circular dichroism (VCD). The method of measurement involves a simple change in the optical set-up and electronic processing of a VCD spectrometer such that the VCB spectrum appears at twice the polarization modulation frequency as a pseudo vibrational linear dichroism (VLD) spectrum. VCB spectra are also calculated with density function theory (DFT) for the first time using a commercially available program for rotational strengths where the calculated intensities are convolved with the real, dispersive part of a normalized complex Lorentzian lineshape rather than the imaginary, absorptive part, normally used for IR and VCD intensity calculations. Comparison of the measured and calculated VCB, VCD, and IR spectra of (+)-R-limonene and (-)-S-alpha-pinene show close agreement and confirm the validity of the new VCB measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chir.20816DOI Listing

Publication Analysis

Top Keywords

vibrational circular
12
circular birefringence
8
vibrational optical
8
vibrational
6
vcb
6
observation calculation
4
calculation vibrational
4
birefringence form
4
form vibrational
4
optical activity
4

Similar Publications

Quantum chemical calculations of one-photon absorption, electronic circular dichroism and anisotropy factor spectra for the A-band transition of fenchone, camphor and 3-methylcyclopentanone (3MCP) are reported. While the only weakly allowed nature of the transition leads to comparatively large anisotropies, a proper theoretical description of the absorption for such a transition requires to account for non-Condon effects. We present experimental data for the anisotropy of 3MCP in the liquid phase and show that corresponding Herzberg-Teller corrections are critical to reproduce the main experimental features.

View Article and Find Full Text PDF

The ultrashort peptide -fluorenylmethoxycarbonyl-phenylalanyl-phenylalanine (FmocFF) has been largely investigated due to its ability to self-assemble into fibrils (100 nm-μm scale) that can form a sample-spanning gel network. The initiation of the gelation process requires either a solvent switch (water added to dimethyl sulfoxide) or a pH-switch (alkaline to neutral) protocol, both of which ensure the solubility of the peptide as a necessary step preceding gelation. While the respective gel phases are well understood in structural and material characteristics terms the pregelation conditions are known to a lesser extent.

View Article and Find Full Text PDF

We report a stereo-differentiating dynamic kinetic asymmetric Rh(I)-catalyzed Pauson-Khand reaction, which provides access to an array of thapsigargin stereoisomers. Using catalyst-control, a consistent stereochemical outcome is achieved at C2─for both matched and mismatched cases─regardless of the allene-yne C8 stereochemistry. The stereochemical configuration for all stereoisomers was assigned by comparing experimental vibrational circular dichroism (VCD) and C NMR to DFT-computed spectra.

View Article and Find Full Text PDF

Acoustic waves provide an effective method for object manipulation in microfluidics, often requiring high-frequency ultrasound in the megahertz range when directly handling microsized objects, which can be costly. Micro-air-bubbles in water offer a solution toward low-cost technologies using low-frequency acoustic waves. Owing to their high compressibility and low elastic modulus, these bubbles can exhibit significant expansion and contraction in response to even kilohertz acoustic waves, leading to resonances with frequencies determined and tuned by air-bubble size.

View Article and Find Full Text PDF

This paper experimentally examines the influence of hybrid excitation on the performance of vibrational piezoelectric energy harvesting systems on a bluff body with a variable cross section along its generatrix. A combination of vibrational excitation from a shaker and airflow is considered the source from which energy is harvested. Varied excitation frequencies and airflow velocities across five different masses were considered, each defining the natural frequency of the system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!