Enzyme activities can provide indication for quantitative changes in soil organic matter (SOM). It is known that the activities of most enzymes increase as native SOM content reflecting larger microbial communities and stabilization of enzymes on humic materials. Beta-glucosidase (beta-Glu) activities have been frequently used as indicators of changes in quantity and quality of SOM. In this study we propose a simple and very sensitive method, which has lower limit of detection compared with classic spectrophotometric method with the aim of determinate the beta-Glu activity in soil samples using Fluorescein mono-beta-D-glucopyranoside (FMGlc) as a substrate. The fluorescein released by the enzymatic reaction was quantified by capillary electrophoresis-laser induced fluorescence (CE-LIF) method. The background electrolyte (BGE) consisted in 40 mM phosphate buffer, pH 6. The LOD and LOQ for fluorescein were 1.3 10(-7) mg mL(-1) and 6.4 10(-6) mg mL(-1), respectively. This work deals with the minimization of the mixture for the enzymatic reaction and with the optimization conditions of CE separation. To the best of our knowledge, this is the first time that an enzymatic activity was detected in soil using CE-LIF system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-009-0575-7DOI Listing

Publication Analysis

Top Keywords

enzymatic reaction
8
determination beta-glucosidase
4
beta-glucosidase activity
4
activity soils
4
soils pre
4
pre capillary
4
capillary enzyme
4
enzyme assay
4
assay capillary
4
capillary electrophoresis
4

Similar Publications

Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effect.

Nat Commun

December 2024

Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.

Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e to the 2e pathway under acidic conditions.

View Article and Find Full Text PDF

The outstanding efficiency and selectivity of enzymatic reactions, such as C-H oxidation by nonheme iron oxygenases, stems from a precise control of substrate positioning inside the active site. The resulting proximity between a specific moiety (a certain C-H bond) to the reactant (a FeIV(O) active species) translates into higher rates and selectivity, that can be in part replicated also with artificial supramolecular catalysts. However, structural modification of the position and orientation of the binding site both in enzymes and in artificial catalysts often leads to significant variations in reactivity that can be difficult to rationalize due to the system's complexity.

View Article and Find Full Text PDF

Assessing metal-induced glycation in French fries.

Metallomics

December 2024

Department of Environmental and Physical Sciences, Faculty of Science.

Non-enzymatic glycation is the chemical reaction between the amine group of an amino acid and the carbonyl group of a reducing sugar. The final products of this reaction, advanced glycation end-products (AGEs), are known to play a key role in aging and many chronic diseases. The kinetics of the AGE formation reaction depends on several factors, including pH, temperature, and the presence of prooxidant metals, such as iron and copper.

View Article and Find Full Text PDF

Developing photoactivated artificial enzymes for sustainable fuel production.

Curr Opin Chem Biol

December 2024

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. Electronic address:

Enzymes catalyze molecular reactions with remarkable efficiency and selectivity under mild conditions. Photoactivated enzymes make use of a light-absorbing chromophore to drive chemical transformations, ideally using sunlight as an energy source. The direct attachment of a chromophore to native enzymes is advantageous, as information on the underlying catalytic mechanisms can be obtained.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) are fluorescent materials that have been developed as sensors for measuring the activities of enzymes. However, most sensors to date rely on end-point measurement and empirical functions to correlate enzyme concentrations with fluorescence responses. Less emphasis is put on analyzing time-dependent fluorescence responses and their connections with enzymatic kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!