[Progress in virology: impact on physiopathology of asthma in children].

Rev Mal Respir

Unité de Pneumologie et d'allergologie pédiatrique, Département de Pédiatrie Médicale, Centre Hospitalo-Universitaire Charles Nicolle, 1 rue de Germont 76031 Rouen cedex.

Published: December 2009

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0761-8425(09)73542-9DOI Listing

Publication Analysis

Top Keywords

[progress virology
4
virology impact
4
impact physiopathology
4
physiopathology asthma
4
asthma children]
4
[progress
1
impact
1
physiopathology
1
asthma
1
children]
1

Similar Publications

Integration of human papillomavirus (HPV) into the host genome drives HPV-positive head and neck squamous cell carcinoma (HPV HNSCC). Whole-genome sequencing of 51 tumors revealed intratumor heterogeneity of HPV integration, with 44% of breakpoints subclonal, and a biased distribution of integration breakpoints across the HPV genome. Four HPV physical states were identified, with at least 49% of tumors progressing without integration.

View Article and Find Full Text PDF

Epigenetic alteration in cervical cancer induced by human papillomavirus.

Int Rev Cell Mol Biol

January 2025

Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México. Electronic address:

The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.

View Article and Find Full Text PDF

Characterization of a cell-adapted completely attenuated genotype GIIa porcine epidemic diarrhea virus strain.

Virology

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China. Electronic address:

Porcine epidemic diarrhea virus (PEDV) has caused significant harm to the global pig industry since its discovery. In this study, a highly pathogenic strain of GIIa PEDV CH/HBXT/2018, isolated previously, was continuously passaged in Vero cells up to passage (P)240, resulting in a completely attenuated virus. The proliferation characteristics of different passages of the strain in Vero cells, pathogenicity in newborn piglets, and mutations in S gene sequence indicated that as the passage number increased, the replication efficiency of PEDV in Vero cells gradually improved, with a more pronounced cytopathic effect.

View Article and Find Full Text PDF

Background: Uzbekistan, a highly endemic country for hepatitis B virus (HBV), introduced infant vaccination with hepatitis B vaccine (HepB) in 2001. Since 2002, it had ≥90 % reported immunization coverage for ≥3 doses of HepB (HepB3) and the birth dose (HepB-BD). However, the impact of HepB vaccination and the progress towards achieving the regional hepatitis B control and global viral hepatitis B elimination goals had not been assessed.

View Article and Find Full Text PDF

Coronavirus epidemics have posed a serious threat to both human and animal health. To combat emerging infectious diseases caused by coronaviruses, various animal infection models have been developed and applied in research, including non-human primate models, ferret models, hamster models, mouse models, and others. Moreover, new approaches have been utilized to develop animal models that are more susceptible to infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!