Background: Readmission soon after hospital discharge is an expensive and often preventable event for patients with heart failure. We present a model approved by the National Quality Forum for the purpose of public reporting of hospital-level readmission rates by the Centers for Medicare & Medicaid Services.

Methods And Results: We developed a hierarchical logistic regression model to calculate hospital risk-standardized 30-day all-cause readmission rates for patients hospitalized with heart failure. The model was derived with the use of Medicare claims data for a 2004 cohort and validated with the use of claims and medical record data. The unadjusted readmission rate was 23.6%. The final model included 37 variables, had discrimination ranging from 15% observed 30-day readmission rate in the lowest predictive decile to 37% in the upper decile, and had a c statistic of 0.60. The 25th and 75th percentiles of the risk-standardized readmission rates across 4669 hospitals were 23.1% and 24.0%, with 5th and 95th percentiles of 22.2% and 25.1%, respectively. The odds of all-cause readmission for a hospital 1 standard deviation above average was 1.30 times that of a hospital 1 standard deviation below average. State-level adjusted readmission rates developed with the use of the claims model are similar to rates produced for the same cohort with the use of a medical record model (correlation, 0.97; median difference, 0.06 percentage points).

Conclusions: This claims-based model of hospital risk-standardized readmission rates for heart failure patients produces estimates that may serve as surrogates for those derived from a medical record model.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCOUTCOMES.108.802686DOI Listing

Publication Analysis

Top Keywords

readmission rates
24
heart failure
16
all-cause readmission
12
medical record
12
readmission
10
30-day all-cause
8
rates patients
8
patients heart
8
readmission hospital
8
model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!