Objective: To compare the volume of the hippocampus and parahippocampal gyrus in elderly individuals with and without depressive disorders, and to determine whether the volumes of these regions correlate with scores on memory tests.
Method: Clinical and demographic differences, as well as differences in regional gray matter volumes, were assessed in 48 elderly patients with depressive disorders and 31 control subjects. Brain (structural MRI) scans were processed using statistical parametric mapping and voxel-based morphometry. Cognitive tests were administered to subjects in both groups.
Results: There were no between-group gray matter volume differences in the hippocampus or parahippocampal gyrus. In the elderly depressed group only, the volume of the left parahippocampal gyrus correlated with scores on the delayed naming portion of the visual-verbal learning test. There were also significant direct correlations in depressed subjects between the volumes of the left hippocampus, right and left parahippocampal gyrus and immediate recall scores on verbal episodic memory tests and visual learning tests. In the control group, there were direct correlations only between overall cognitive performance (as assessed with the MMSE) and the volume of right hippocampus, and between the total score on the visual-verbal learning test and the volume of the right and left parahippocampal gyrus.
Conclusions: These findings highlight different patterns of relationship between cognitive performance and volumes of medial temporal structures in depressed individuals and healthy elderly subjects. The direct correlation between delayed visual-verbal memory recall scores with left parahippocampal volumes specifically in elderly depressed individuals provides support to the view that depression in elderly populations may be a risk factor for dementia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2009.11.004 | DOI Listing |
Mol Neurobiol
January 2025
Department of Neurology, Huai'an First People's Hospital, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huai'an, 223300, Jiangsu, China.
A comprehensive genome-wide association study (GWAS) has validated the identification of the Plexin-A 4 (PLXNA4) gene as a novel susceptibility factor for Alzheimer's disease (AD). Nonetheless, the precise role of PLXNA4 gene polymorphisms in the pathophysiology of AD remains to be established. Consequently, this study is aimed at exploring the relationship between PLXNA4 gene polymorphisms and neuroimaging phenotypes intimately linked to AD.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
Major depressive disorder (MDD) exhibits notable sex differences in prevalence and clinical and neurobiological manifestations. Though the relationship between peripheral inflammation and MDD-related brain changes is well studied, the role of sex as a modifying factor is underexplored. This study aims to assess how sex influences brain and inflammatory markers in MDD.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
Successful navigation relies on reciprocal transformations between spatial representations in world-centered (allocentric) and self-centered (egocentric) frames of reference. The neural basis of allocentric spatial representations has been extensively investigated with grid, border, and head-direction cells in the medial entorhinal cortex (MEC) forming key components of a 'cognitive map'. Recently, egocentric spatial representations have also been identified in several brain regions, but evidence for the coexistence of neurons encoding spatial variables in each reference frame within MEC is so far lacking.
View Article and Find Full Text PDFAutism Res
January 2025
Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
The cerebellum plays a crucial role in functions, including sensory-motor coordination, cognition, and emotional processing. Compared to the neocortex, the human cerebellum exhibits a protracted developmental trajectory. This delayed developmental timeline may lead to increased sensitivity of the cerebellum to external influences, potentially extending the vulnerability period for neurological disorders.
View Article and Find Full Text PDFFront Neurosci
December 2024
Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia.
Introduction: Time perception is a fundamental cognitive function, the brain mechanisms of which are not fully understood. Recent electroencephalography (EEG) studies have shown that neural oscillations in specific frequency bands may play a role in this process. In the current study, we sought to investigate how neurophysiological activity of cortical structures relates to subjective time estimations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!