ZnT3 mRNA levels are reduced in Alzheimer's disease post-mortem brain.

Mol Neurodegener

Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland.

Published: December 2009

Background: ZnT3 is a membrane Zn(2+ )transporter that is responsible for concentrating Zn(2+ )into neuronal presynaptic vesicles. Zn(2+ )homeostasis in the brain is relevant to Alzheimer's disease (AD) because Zn(2+ )released during neurotransmission may bind to Abeta peptides, accelerating the assembly of Abeta into oligomers which have been shown to impair synaptic function.

Results: We quantified ZnT3 mRNA levels in Braak-staged human post mortem (pm) brain tissue from medial temporal gyrus, superior occipital gyrus, superior parietal gyrus, superior frontal gyrus and cerebellum from individuals with AD (n = 28), and matched controls (n = 5) using quantitative real-time PCR. ZnT3 mRNA levels were significantly decreased in all four cortical regions examined in the AD patients, to 45-60% of control levels. This reduction was already apparent at Braak stage 4 in most cortical regions examined. Quantification of neuronal and glial-specific markers in the same samples (neuron-specific enolase, NSE; and glial fibrillary acidic protein, GFAP) indicated that loss of cortical ZnT3 expression was more pronounced, and occurred prior to, significant loss of NSE expression in the tissue. Significant increases in cortical GFAP expression were apparent as the disease progressed. No gene expression changes were observed in the cerebellum, which is relatively spared of AD neuropathology.

Conclusions: This first study to quantify ZnT3 mRNA levels in human pm brain tissue from individuals with AD and controls has revealed a significant loss of ZnT3 expression in cortical regions, suggesting that neuronal cells in particular show reduced expression of ZnT3 mRNA in the disease. This suggests that altered neuronal Zn(2+ )handling may be an early event in AD pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806356PMC
http://dx.doi.org/10.1186/1750-1326-4-53DOI Listing

Publication Analysis

Top Keywords

znt3 mrna
20
mrna levels
16
gyrus superior
12
cortical regions
12
znt3
8
alzheimer's disease
8
brain tissue
8
regions examined
8
znt3 expression
8
expression
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!