AI Article Synopsis

  • iPSCs (induced pluripotent stem cells) are game-changers in regenerative medicine, allowing the creation of patient-specific stem cells from adults, showing promise for treating diseases linked to aging and injury.
  • The study introduces a xeno-free system for generating iPSCs, eliminating the use of animal products, and successfully demonstrates that these cells maintain pluripotency and can differentiate into various cell types.
  • This innovative method could streamline the path for clinical trials and cellular therapies, potentially making them easier to regulate while preserving the cells' ability to differentiate into needed types.

Article Abstract

Induced pluripotent stem cells (iPSCs) have radically advanced the field of regenerative medicine by making possible the production of patient-specific pluripotent stem cells from adult individuals. While cell differentiation protocols have been successfully developed, and animal models of human disease have proved that these cells have the potential to treat human diseases and conditions produced as a consequence of aging, degeneration, injury, and birth defects, logistical issues still remain unsolved and hamper the possibility of testing these cells in human clinical trials. Among them is the widely spread use of animal products for the generation and culture of iPSCs. We report here a xeno-free iPSC generation system that addresses all the steps of iPSCs production including the isolation and culture of adult skin fibroblasts, and iPSCs generation, expansion, and maintenance. iPSCs generated with a polycistronic lentiviral vector under xeno-free conditions displayed markers of pluripotency and gave rise to embryoid bodies (EBs) displaying indicators of the 3 primary germ layers. Xeno-free iPSCs injected into nude mice produced classic teratomas, and teratoma explants cultured under conditions favoring fibroblastic cells gave rise to cells morphologically indistinguishable from input cells. Protocols here described will facilitate the implementation of new cellular therapies for preclinical and clinical studies, potentially reducing the regulatory burden without compromising the differentiation potential of the cells.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2009.0459DOI Listing

Publication Analysis

Top Keywords

pluripotent stem
12
stem cells
12
cells
9
xeno-free conditions
8
ipscs
6
human-induced pluripotent
4
cells produced
4
xeno-free
4
produced xeno-free
4
conditions
4

Similar Publications

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.

View Article and Find Full Text PDF

Background And Aims: Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is reversible at early stages, making early identification of high-risk individuals clinically valuable. Previously, we demonstrated that patient-derived induced pluripotent stem cells (iPSCs) harboring MASLD DNA risk variants exhibit greater oleate-induced intracellular lipid accumulation than those without these variants. This study aimed to develop an iPSC-based MASLD risk predictor using functional lipid accumulation assessments.

View Article and Find Full Text PDF

Background: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.

View Article and Find Full Text PDF

Gene syntax-the order and arrangement of genes and their regulatory elements-shapes the dynamic coordination of both natural and synthetic gene circuits. Transcription at one locus profoundly impacts the transcription of nearby adjacent genes, but the molecular basis of this effect remains poorly understood. Here, using integrated reporter circuits in human cells, we show that supercoiling-mediated feedback regulates expression of adjacent genes in a syntax-specific manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!