AI Article Synopsis

Article Abstract

The new thiophosphate salt K(4)In(2)(PS(4))(2)(P(2)S(6)) (1), the selenophosphate salts K(5)In(3)(mu(3)-Se)(P(2)Se(6))(3) (2), K(4)In(4)(mu-Se)(2)(P(2)Se(6))(3) (3), and the mixed seleno-/thiophosphate salt K(4)In(4)(mu-Se)(P(2)S(2.36)Se(3.64))(3) (4) are described. For the first time, a structurally different outcome of a chalcophosphate reaction was observed when sulfur and selenium are mixed, for example, by the use of K(2)S/P(2)Se(5)/S/In instead of K(2)Se/P(2)Se(5)/Se/In or K(2)S/P(2)S(5)/S/In. In compounds 1-4 indium atoms exist in a variety coordination environments. While in 1, indium is octahedrally coordinated, in 2-4 tetrahedral, trigonal-bipyramidal, and octahedral coordination environments are found for indium atoms. This remarkable structural diversity possibly is a reason, why particularly indium chalcophosphate flux reactions often produce a large variety of compounds at intermediate temperatures. In the mixed seleno-/thiophosphate salt K(4)In(4)(mu-Se)(P(2)S(2.36)Se(3.64))(3) (4) most of the chalcogen sites around the tetrahedrally coordinated P atoms show mixed S/Se occupancy. There is, however, a preference for Se binding to In ions and S binding to potassium ions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic902105jDOI Listing

Publication Analysis

Top Keywords

structural diversity
8
mixed seleno-/thiophosphate
8
seleno-/thiophosphate salt
8
salt k4in4mu-sep2s236se3643
8
indium atoms
8
coordination environments
8
environments indium
8
diversity mixing
4
mixing chalcogen
4
atoms
4

Similar Publications

Small and Versatile Cyclotides as Anti-infective Agents.

ACS Infect Dis

January 2025

Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil.

Plants provide an abundant source of potential therapeutic agents, including a diverse array of compounds, such as cyclotides, which are peptides known for their antimicrobial activity. Cyclotides are multifaceted molecules with a wide range of biological activities. Their unique topology forms a head-to-tail cyclic structure reinforced by a cysteine knot, which confers chemical and thermal stability.

View Article and Find Full Text PDF

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

Designing binders to target undruggable proteins presents a formidable challenge in drug discovery. In this work, we provide an algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model and subsequently screen these novel sequences for target-selective interaction activity via a contrastive language-image pretraining (CLIP)-based contrastive learning architecture.

View Article and Find Full Text PDF

Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in and mutants, where lysosomes accumulate cholesterol.

View Article and Find Full Text PDF

Tactile interfaces are essential for enhancing human-machine interactions, yet achieving large-scale, precise distributed force sensing remains challenging due to signal coupling and inefficient data processing. Inspired by the spiral structure of and the processing principles of neuronal systems, this study presents a digital channel-enabled distributed force decoding strategy, resulting in a phygital tactile sensing system named PhyTac. This innovative system effectively prevents marker overlap and accurately identifies multipoint stimuli up to 368 regions from coupled signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!