Delivery of macromolecules into live cells by simple co-incubation with a peptide.

Chembiochem

Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA.

Published: February 2010

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2916931PMC
http://dx.doi.org/10.1002/cbic.200900527DOI Listing

Publication Analysis

Top Keywords

delivery macromolecules
4
macromolecules live
4
live cells
4
cells simple
4
simple co-incubation
4
co-incubation peptide
4
delivery
1
live
1
cells
1
simple
1

Similar Publications

Transdermal drug delivery (TDD) represents a transformative paradigm in drug administration, offering advantages such as controlled drug release, enhanced patient adherence, and circumvention of hepatic first-pass metabolism. Despite these benefits, the inherent barrier function of the skin, primarily attributed to the stratum corneum, remains a significant impediment to the efficient permeation of therapeutic agents. Recent advancements have focused on macromolecular-assisted permeation enhancers, including carbohydrates, lipids, amino acids, nucleic acids, and cell-penetrating peptides, which modulate skin permeability by transiently altering its structural integrity.

View Article and Find Full Text PDF

High throughput intracellular delivery of biological macromolecules is crucial for cell engineering, gene expression, therapeutics, diagnostics, and clinical studies; however, most existing techniques are either contact-based or have throughput limitations. Herein, we report a light-activated, contactless, high throughput photoporation method for highly efficient and viable cell transfection of more than a million cells within a minute. We fabricated reduced graphene oxide (rGO) nanoflakes that was mixed with a polydimethylsiloxane (PDMS) nanocomposite thin sheet with an area of 3 cm and a thickness of ∼600 μm.

View Article and Find Full Text PDF

Many food nutrients suffer from a series of limitations such as poor water solubility, low stability and inadequate bioavailability. These challenges can be effectively improved by food-based delivery systems (FDSs). FDSs are a series of functional carriers developed based on food-borne macromolecules.

View Article and Find Full Text PDF

Oral delivery of dihydroartemisinin for the treatment of melanoma via bovine milk exosomes.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.

Cancer, particularly skin cancer, is a major cause of mortality worldwide, with melanoma being one of the most aggressive and challenging to treat types. Current therapeutic options, such as dacarbazine (DTIC), have limitations due to dose-related toxicities like liver toxicity. Therefore, there is a need for new and effective treatments for melanoma.

View Article and Find Full Text PDF

Serial macromolecular crystallography has become a powerful method to reveal room temperature structures of biological macromolecules and perform time-resolved studies. ID29, a flagship beamline of the ESRF 4th generation synchrotron, is the first synchrotron beamline in the world capable of delivering high brilliance microsecond X-ray pulses at high repetition rate for the structure determination of biological macromolecules at room temperature. The cardinal combination of microsecond exposure times, innovative beam characteristics and adaptable sample environment provides high quality complete data, even from an exceptionally small amount of crystalline material, enabling what we collectively term serial microsecond crystallography (SµX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!