Blue amplified spontaneous emission at room temperature is demonstrated from the exposed face of the strongly emitting organic semiconductor 1,1,4,4-tetraphenyl-1,3-butadiene in single crystal form. The symmetry of the crystal and calculation of lattice sums indicate the J-type organization of the molecular transition moments. The minimum in the lowest exciton dispersion branch, from which emission takes place, is found at the edge of the Brillouin zone leading to a dominant vibronic emission since the zero-phonon line is forbidden. The observed gain narrowed line is attributed to the vibronic replica which becomes amplified with increased pumping. The reported emission is along the normal to the exposed crystal face, important for the development of vertical cavity geometry lasers based on organic single crystals. The threshold excitation fluence of 400 microJ cm(-2) is comparable to other organic crystalline systems, even if the amplification path is much reduced as a consequence of the vertical geometry. Considering these relevant aspects, the optical characterization of this material is provided. The polarized absorption spectra are reported and the properties of the lowest-energy excitonic state investigated. Calculation of the electronic transitions for the isolated molecule, lattice sums for the transition at lowest energy, and the symmetry of the crystal allow attributing the largest face of the samples and the observed optical bands in the spectra. Polarized time-resolved spectra are also reported allowing to identify the intrinsic excitonic emission.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200900267DOI Listing

Publication Analysis

Top Keywords

polarized absorption
8
symmetry crystal
8
lattice sums
8
spectra reported
8
emission
6
absorption spontaneous
4
spontaneous stimulated
4
stimulated blue
4
blue light
4
light emission
4

Similar Publications

Optical detection of an individual single nano-object on an opaque substrate and direct determination of its absorption cross section is demonstrated using reflective spatial modulation spectroscopy. This method is applied to optical imaging and investigation of individual single-wall carbon nanotubes in the 1.6 nm diameter range on silicon substrates, which are also individually characterized by atomic force microscopy, scanning electron microscopy, and in situ micro-Raman spectroscopy.

View Article and Find Full Text PDF

SnHPO: A Layered Tin(II) Phosphate with Enhanced Birefringence.

Inorg Chem

January 2025

College of Physics, Qingdao University, National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center (Qingdao University), Qingdao 266071, China.

As promising optoelectronic functional materials in the short-wavelength spectral region, such as ultraviolet (UV) and deep UV, phosphates have recently received increased attention. However, phosphate materials commonly suffer from limited birefringence owing to the highly symmetrical PO tetrahedra. We herein report a layered tin(II) phosphate with improved birefringence.

View Article and Find Full Text PDF

Integration of Asymmetric Multi-Path Hollow Structure and Multiple Heterogeneous Interfaces in FeO@C@NiO Nanoprisms Enabling Ultra-Low and Broadband Absorption.

Small

January 2025

Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China.

A reasonable construction of hollow structures to obtain high-performance absorbers is widely studied, but it is still a challenge to select suitable materials to improve the low-frequency attenuation performance. Here, the FeO@C@NiO nanoprisms with unique tip shapes, asymmetric multi-path hollow cavity, and core-shell heteroepitaxy structure are designed and synthesized based on anisotropy and intrinsic physical characteristics. Impressively, by changing the load of NiO, the composites achieve strong absorption, broadband, low-frequency absorption: the reflection loss of -55.

View Article and Find Full Text PDF

Interaction of normelinonine F and related N-methyl-β-carbolines derivatives with bovine serum albumin. Spectroscopic profiles, multivariate analysis and theoretical calculations.

Int J Biol Macromol

January 2025

Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164, B7130IWA Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina. Electronic address:

β-carbolines (βCs) represent a large family of bioactive alkaloids, including norharmane and normelinonine F, known for their diverse pharmacological activities. The effects of these alkaloids may depend, among other factors, on their delivery, accumulation in different subcellular compartments, and interactions with biomacromolecules such as serum albumins. In this study, we investigated the pH dependence of the interactions between bovine serum albumin (BSA) and four βCs (norharmane, normelinonine F, and their corresponding N(9)-methyl derivatives) using UV-vis and fluorescence spectroscopy, combined with multivariate analysis and molecular docking.

View Article and Find Full Text PDF

The angle of polarized light (AOP) property for optical classification of the crosslinked polymer.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur 50603 Malaysia.

Light-matter interaction has been profoundly studied for sample material classification. However, the optical classification of the sample through the polarized light-matter interaction remains underexplored. It is limited to the measurement of intensity instead of the angle of polarized light (AOP) for its degree of polarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!