Computer generated holography is an extremely demanding and complex task when it comes to providing realistic reconstructions with full parallax, occlusion, and shadowing. We present an algorithm designed for data-parallel computing on modern graphics processing units to alleviate the computational burden. We apply Gaussian interpolation to create a continuous surface representation from discrete input object points. The algorithm maintains a potential occluder list for each individual hologram plane sample to keep the number of visibility tests to a minimum. We experimented with two approximations that simplify and accelerate occlusion computation. It is observed that letting several neighboring hologram plane samples share visibility information on object points leads to significantly faster computation without causing noticeable artifacts in the reconstructed images. Computing a reduced sample set via nonuniform sampling is also found to be an effective acceleration technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.48.006841 | DOI Listing |
Insights Imaging
January 2025
Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, QC, Canada.
Objectives: To compare thoracolumbar fascia (TLF) shear strain between individuals with and without nonspecific low back pain (NSLBP), investigate its correlation with symptoms, and assess a standardized massage technique's impact on TLF shear strain.
Methods: Participants were prospectively enrolled between February 2021 and June 2022. Pre- and post-intervention TLF ultrasound and pain/disability questionnaires were conducted.
Eur Radiol Exp
January 2025
Computational Clinical Imaging Group (CCIG), Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.
Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e.
View Article and Find Full Text PDFLangenbecks Arch Surg
January 2025
Department of Chemical Science & Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
Purpose: We aimed to develop a novel fluorescent surgical gauze dyed with indocyanine green (ICG) to guide surgeons to the target anatomical destination during surgery for real-time navigation and to prevent gauze remnants after surgery.
Methods: Surgical gauze was dyed with an aqueous solution of ICG (5.0 × 10 mol L for Steraze, 1.
J Neurol
January 2025
Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
Background: Anti-IgLON5 disease is a rare autoimmune neurological disorder with prominent Tau protein deposits in the brainstem and hypothalamus. The aim of this study was to visualize the in vivo distribution patterns of Tau protein in patients with anti-IgLON5 disease using the second-generation Tau PET tracer, Florzolotau (18F) PET imaging.
Methods: Patients diagnosed with anti-IgLON5 disease were enrolled consecutively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!