Objective: The purpose of this study was to evaluate the image quality, radiation dose, and diagnostic accuracy of dual-energy CT angiography (CTA) compared with 3D rotational digital subtraction angiography (DSA) in the detection of intracranial aneurysms.
Subjects And Methods: Forty-six patients with clinically suspected intracranial aneurysms underwent dual-source dual-energy CTA and 3D DSA. For the analysis of the image quality and radiation dose of dual-energy CTA, 46 patients who underwent digital subtraction CTA were recruited as a control group. The image quality of dual-energy CTA and digital subtraction CTA was rated on a 4-point scale as excellent, good, moderate, or poor. The radiation dose of CTA was recorded according to patient protocol. Aneurysm detection with dual-energy CTA compared with 3D DSA was analyzed on a per-patient and on a peraneurysm basis. Sensitivity, specificity, and positive and negative predictive values for aneurysm presence were determined. The mean maximum diameter and dome and neck dimensions of aneurysms were measured on dual-energy CTA and 3D DSA images. Correlation analysis between the two techniques was performed.
Results: There was no statistical difference between the image quality of dual-energy CTA and that of digital subtraction CTA (p>0.05). Patients undergoing dual-energy CTA received a smaller radiation dose (volume CT dose index, 20.6+/-0.1 mGy [mean+/-SD]; dose-length product, 398.6+/-19.0 mGy x cm) than those undergoing digital subtraction CTA (volume CT dose index, 50.4+/-3.4 mGy; dose-length product, 1,095.6+/-114.2 mGyxcm) (p<0.05). Three-dimensional DSA showed no aneurysm in 11 patients and 40 aneurysms in 35 patients. The mean maximum diameter of the aneurysms was 6+/-3 mm; the dome measurement, 5+/-3 mm; and the neck dimension, 3+/-2 mm. With dual-energy CTA, 38 aneurysms in 34 patients were correctly detected, and two aneurysms in two patients were missed. With DSA as the standard of reference, the sensitivity, specificity, and positive and negative predictive values of dual-energy CTA in the detection of intracranial aneurysm were 97.1%, 100%, 100%, and 91.7% on a per-patient basis and 95.0%, 100%, 100%, and 99.7% on a per-aneurysm basis. Dual-energy CTA had sensitivities of 93.8%, 100%, and 80.0% and specificities of 100%, 100%, and 100% in the detection of aneurysms larger than 5 mm, those measuring 3.1-5 mm, and aneurysms 3 mm or smaller. At dual-energy CTA, the mean maximum diameter and dome and neck dimensions were 6+/-3 mm, 5+/-3 mm, and 3+/-2 mm. Excellent correlation was found between DSA and dual-energy CTA findings with respect to mean maximum diameter and dome and neck dimensions (r=0.969, 0.957, and 0.870; p = 0.000).
Conclusion: On the basis of the findings in the small series of patients evaluated, contrast-enhanced dual-energy CTA had diagnostic image quality at a lower radiation dose than digital subtraction CTA and high diagnostic accuracy compared with 3D DSA in the detection of intracranial aneurysms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2214/AJR.08.2290 | DOI Listing |
Curr Med Imaging
January 2025
Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital,3002 SunGangXi Road, Shenzhen, China.
Purpose: This study aims to evaluate the clinical efficacy of spectral dual-energy detector computed tomography (SDCT) and its associated parameters in diagnosing acute pulmonary embolism (APE).
Methods: Retrospective analysis of imaging data from 86 APE-diagnosed patients using SDCT was conducted. Virtual monoenergetic images (VMIs) at 40, 70, and 100 KeV, Iodine concentration (IC) maps, Electron Cloud Density Map (ECDM), Effective atomic number (Z-eff) maps, and Hounsfield unit attenuation plots (VMI slope) were reconstructed from pulmonary artery phase CT images.
Radiographics
January 2025
From the Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 S Kingshighway Blvd, St. Louis, MO 63110.
Historically, evaluation of the upper extremity vasculature was performed using digital subtraction angiography. With the advancement of cross-sectional imaging and submillimeter isotropic data acquisition, CT angiography (CTA) has become an excellent noninvasive diagnostic tool for evaluation of the vasculature of the upper extremities. CTA allows quick evaluation of vessel patency and irregularity and achievement of the anatomic detail needed in preoperative planning.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wrocław, Poland.
Eur J Radiol
December 2024
Department of Biostatistics, University of Iowa, Iowa City, IA, USA.
Rationale And Objectives: To investigate the effect of ComBat harmonization on the stability of myocardial radiomic features derived from multi-energy CT reconstructions.
Materials And Methods: A retrospective study was conducted on 205 patients who underwent dual-energy chest CTA at a single center. The data was reconstructed into multiple spectral reconstructions (mixed energy simulating standard 120 Kv acquisition and monoenergetic images ranging from 40 to 190 keV in increments of 10).
Diagn Interv Radiol
December 2024
The First Hospital of Putian City, Department of Radiology, Putian, China.
Purpose: This study aimed to research the optimal energy range of dual-energy computed tomography angiography (DECTA)-based virtual monoenergetic imaging (VMI) for evaluations after cerebral aneurysm clipping.
Methods: Sixty patients who underwent DECTA after cerebral aneurysm clipping were analyzed retrospectively. Conventional computed tomography angiography (CTA) was compared with VMIs at 60, 70, 80, 90, and 100 keV.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!