dRTA (distal renal tubular acidosis) and HS (hereditary spherocytosis) are two diseases that can be caused by mutations in the gene encoding the AE1 (anion exchanger 1; Band 3). dRTA is characterized by defective urinary acidification, leading to metabolic acidosis, renal stones and failure to thrive. HS results in anaemia, which may require regular blood transfusions and splenectomy. Mutations in the gene encoding AE1 rarely cause both HS and dRTA. In the present paper, we describe a novel AE1 mutation, Band 3 Edmonton I, which causes dominant HS and recessive dRTA. The patient is a compound heterozygote with the new mutation C479W and the previously described mutation G701D. Red blood cells from the patient presented a reduced amount of AE1. Expression in a kidney cell line showed that kAE1 (kidney AE1) C479W is retained intracellularly. As kAE1 is a dimer, we performed co-expression studies and found that, in kidney cells, kAE1 C479W and G701D proteins traffic independently from each other despite their ability to form heterodimers. Therefore the patient carries one kAE1 mutant that is retained in the Golgi (G701D) and another kAE1 mutant (C479W) located in the endoplasmic reticulum of kidney cells, and is thus probably unable to reabsorb bicarbonate into the blood. We conclude that the C479W mutant is a novel trafficking mutant of AE1, which causes HS due to a decreased cell-surface AE1 protein and results in dRTA due to its intracellular retention in kidney.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20091525 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
This study presents an experimental investigation of the quasi-static and dynamic behavior of a quasi-isotropic carbon-fiber-reinforced composite subjected to in-plane compressive loading. The experiments were performed at strain rates ranging from 4×10-5 to ∼1200 s-1 to quantifythe strain-rate-dependent response, failure propagation, and damage morphology using advanced camera systems. Fiber bridging, kink band formation, dominance of interlaminar failure, and inter-fiber failure fracture planes are evidenced through post-mortem analysis.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
The rotational spectra of a mixture of 2,4-pentanediol (PDL) isomers, comprising both the meso isomers [(2R, 4S) and (2S, 4R)] and the racemic isomers [(2R, 4R) and (2S, 4S)], were recorded using a chirped-pulse Fourier transform microwave spectrometer coupled to a supersonic jet expansion. The conformational landscapes of meso- and racemic-PDL were examined using the Conformer-Rotamer Ensemble Sampling Tool and high-level quantum chemical calculations, generating 26 and 25 conformers, respectively. Five sets of rotational transitions were observed and assigned, with two attributed to meso-PDL and the remaining three attributed to racemic-PDL.
View Article and Find Full Text PDFEcology
January 2025
Wildlife Research and Monitoring Section, Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada.
Animals within social groups respond to costs and benefits of sociality by adjusting the proportion of time they spend in close proximity to other individuals in the group (cohesion). Variation in cohesion between individuals, in turn, shapes important group-level processes such as subgroup formation and fission-fusion dynamics. Although critical to animal sociality, a comprehensive understanding of the factors influencing cohesion remains a gap in our knowledge of cooperative behavior in animals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!