AI Article Synopsis

  • A new algorithm for high-dimensional regression is introduced, modifying the traditional model to create a probabilistic version of backfitting and enhancing feature selection through a variational Bayesian approach.
  • Using the expectation-maximization algorithm, this method simplifies linear modeling while allowing for the detection of relevant features automatically, and it can be adapted for nonlinear regression and classification tasks.
  • The algorithm, which demonstrates significant advantages in computation and robustness, is particularly beneficial for real-time applications like robotics and brain-machine interfaces, and has been validated against various datasets, proving to be an effective alternative to existing regression techniques.

Article Abstract

We present a novel algorithm for efficient learning and feature selection in high-dimensional regression problems. We arrive at this model through a modification of the standard regression model, enabling us to derive a probabilistic version of the well-known statistical regression technique of backfitting. Using the expectation-maximization algorithm, along with variational approximation methods to overcome intractability, we extend our algorithm to include automatic relevance detection of the input features. This variational Bayesian least squares (VBLS) approach retains its simplicity as a linear model, but offers a novel statistically robust black-box approach to generalized linear regression with high-dimensional inputs. It can be easily extended to nonlinear regression and classification problems. In particular, we derive the framework of sparse Bayesian learning, the relevance vector machine, with VBLS at its core, offering significant computational and robustness advantages for this class of methods. The iterative nature of VBLS makes it most suitable for real-time incremental learning, which is crucial especially in the application domain of robotics, brain-machine interfaces, and neural prosthetics, where real-time learning of models for control is needed. We evaluate our algorithm on synthetic and neurophysiological data sets, as well as on standard regression and classification benchmark data sets, comparing it with other competitive statistical approaches and demonstrating its suitability as a drop-in replacement for other generalized linear regression techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1162/neco.2009.02-08-702DOI Listing

Publication Analysis

Top Keywords

efficient learning
8
learning feature
8
feature selection
8
selection high-dimensional
8
regression
8
high-dimensional regression
8
standard regression
8
generalized linear
8
linear regression
8
regression classification
8

Similar Publications

Automated and Efficient Sampling of Chemical Reaction Space.

Adv Sci (Weinh)

January 2025

Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Machine learning interatomic potentials (MLIPs) promise quantum-level accuracy at classical force field speeds, but their performance hinges on the quality and diversity of training data. An efficient and fully automated approach to sample chemical reaction space without relying on human intuition, addressing a critical gap in MLIP development is presented. The method combines the speed of tight-binding calculations with selective high-level refinement, generating diverse datasets that capture both equilibrium and reactive regions of potential energy surfaces.

View Article and Find Full Text PDF

An enhanced Transformer framework with incremental learning for online stock price prediction.

PLoS One

January 2025

Harvard extension school, Harvard University, Boston, Massachusetts, United States of America.

To address the limitations of existing stock price prediction models in handling real-time data streams-such as poor scalability, declining predictive performance due to dynamic changes in data distribution, and difficulties in accurately forecasting non-stationary stock prices-this paper proposes an incremental learning-based enhanced Transformer framework (IL-ETransformer) for online stock price prediction. This method leverages a multi-head self-attention mechanism to deeply explore the complex temporal dependencies between stock prices and feature factors. Additionally, a continual normalization mechanism is employed to stabilize the data stream, enhancing the model's adaptability to dynamic changes.

View Article and Find Full Text PDF

Low-cost male urogenital simulator for penile implant surgery training: a 3D printing approach.

3D Print Med

January 2025

Department of Surgical & Interventional Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Background: Penile implant surgery is the standard surgical treatment for end-stage erectile dysfunction. However, the growing complexity of modern high-tech penile prostheses has increased the demand for more practical training opportunities. The most advanced contemporary training methods involve simulation training using cadavers, with costs exceeding $5,000 per cadaver, inclusive of biohazard fees.

View Article and Find Full Text PDF

Many applications in biomedicine and synthetic bioengineering rely on understanding, mapping, predicting, and controlling the complex behavior of chemical and genetic networks. The emerging field of diverse intelligence investigates the problem-solving capacities of unconventional agents. However, few quantitative tools exist for exploring the competencies of non-conventional systems.

View Article and Find Full Text PDF

The accuracy of assigning fluorophore identity and abundance, known as spectral unmixing, in biological fluorescence microscopy images remains a significant challenge due to the substantial overlap in emission spectra among fluorophores. In traditional laser scanning confocal spectral microscopy, fluorophore information is acquired by recording emission spectra with a single combination of discrete excitation wavelengths. However, organic fluorophores possess characteristic excitation spectra in addition to their unique emission spectral signatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!