Influence of substrate on electron transfer mechanisms in chambered benthic microbial fuel cells.

Environ Sci Technol

College of Oceanic & Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA.

Published: November 2009

This research investigated whether the addition of an exogenous electron donor would affect power production in laboratory-scale benthic microbial fuel cells (BMFC) by differentially influencing microbially mediated electron transfer processes. Six BMFCs were operated for over one year in a temperature-controlled laboratory. Three BMFCs relied on endogenous electron donors, and three were supplemented with lactate. The supplemented BMFCs generated more cumulative charge, but did not generate higher average current between periods of lactate enrichment. Coulombic efficiencies during the lactate treatments ranged from 25 to 65% suggesting that lactate utilization was variably coupled to power production. Cumulative electron flux resulting from lactate additions and chemical changes within the anode chamber, as well as a difference in the anode-hosted microbial communities indicated that lactate supplementation promoted sulfate reduction. After the addition of molybdate to suppress sulfate reduction and sulfur disproportionation, all BMFCs continued to produce current, but no longer responded to lactate additions. Chemical data support a two-step cycle in which endogenous organic carbon and/or supplemented lactate fuel sulfate reduction resulting in sulfide and simple organic molecules (such as acetate) that can act as the electron donors for the BMFC.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es9013773DOI Listing

Publication Analysis

Top Keywords

sulfate reduction
12
electron transfer
8
benthic microbial
8
microbial fuel
8
fuel cells
8
power production
8
electron donors
8
lactate
8
supplemented lactate
8
lactate additions
8

Similar Publications

Maintaining yield goals while reducing nitrate-nitrogen (NO-N) leaching to groundwater is a challenge for potato (Solanum tuberosum) production in the Wisconsin Central Sands as well as across the United States. The objectives of this study were to quantify the effect of conventional and enhanced efficiency nitrogen (N) fertilizers on NO-N leaching, crop yield, and N uptake in potatoes. We compared five N treatments, which include a 0 N control and 280 kg ha as ammonium sulfate and ammonium nitrate (AS/AN), polymer-coated urea (PCU), urea with a urease inhibitor (Urea+UI), or urea with a UI and a nitrification inhibitor (Urea+UI+NI).

View Article and Find Full Text PDF

Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women of reproductive age. Anovulation is one of the most important clinical features of PCOS, and insulin resistance (IR) is one of the critical pathogenic factors. Woxuanzhongzhou (WXZZ) is a traditional herbal formulation that has shown efficacy in treating PCOS combined with IR, but the underlying mechanism is not clear.

View Article and Find Full Text PDF

Metabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this exploratory study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive-Behavioral Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways.

View Article and Find Full Text PDF

Core-shell In/H-Beta@Ce catalyst with enhanced sulfur and water tolerance for selective catalytic reduction of NO by CH.

J Hazard Mater

January 2025

State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China. Electronic address:

A series of core-shell In/H-Beta@Ce catalysts were synthesized by encapsulating In/H-Beta within an amorphous CeO shell and then evaluated for the selective catalytic reduction of NO by CH (CH-SCR) under challenging conditions with SO and HO. IB@Ce-2 achieved 57.7 % NO conversion at 625°C, representing a 23.

View Article and Find Full Text PDF

Electrode functional microorganisms in bioelectrochemical systems and its regulation: A review.

Biotechnol Adv

January 2025

Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:

Bioelectrochemical systems (BES) as environmental remediation biotechnologies have boomed in the last two decades. Although BESs combined technologies with electro-chemistry, -biology, and -physics, microorganisms and biofilms remain at their core. In this review, various functional microorganisms in BESs for CO reduction, dehalogenation, nitrate, phosphate, and sulfate reduction, metal removal, and volatile organic compound oxidation are summarized and compared in detail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!