Isotope labeled tracers are commonly used to quantify the turnover rates of various metabolic intermediates and yield information regarding physiological regulation. Studies often only consider either one nutritional state (fasted or fed) and/or one question (e.g., measure of lipid or protein turnover). In this article, we consider a novel application combining the global approach of metabonomics with widespread stable isotope labeling as a way of being able to map metabolism in open mammalian systems, an approach we call "isotopomics". A total of 45 15-week-old male Zucker rats were administrated different amounts (from 0.5 to 8 mmol/kg) of sodium [1,2-(13)C(2)] acetate. Plasma samples taken at 1, 4, and 24 h were analyzed with (13)C nuclear magnetic resonance (NMR) and gas chromatography/mass spectrometry (GC/MS) to measure (13)C isotopic enrichment of 39 plasma metabolites across a wide range of compound classes (amino acids, short-chain fatty acids, lactate, glucose, and free fatty acids). Isotopic enrichment from 0.1-7.1 mole percent excess (MPE) for the highest dose could be reliably measured in 16 metabolites, and the kinetics of their (13)C isotopic enrichment are reported. Clustering metabolites based on (13)C kinetic curves enabled highlighting of time dependent patterns of (13)C distribution through the key metabolic pathways. These kinetic and quantitative data were reported into a biochemical map. This type of isotopomic approach for mapping dynamic metabolism in an open system has great potential for advancing our mechanistic knowledge of how different interventions and diseases can impact the metabolic response of animals and humans.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac902086gDOI Listing

Publication Analysis

Top Keywords

isotopic enrichment
12
dynamic metabolism
8
[12-13c2] acetate
8
metabolism open
8
13c isotopic
8
fatty acids
8
13c
5
isotopomics top-down
4
top-down systems
4
systems biology
4

Similar Publications

Applying Ra and Ra to Trace Lateral Groundwater Discharge into Lake Qinghai, China.

Ground Water

December 2024

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.

Quantifying lacustrine groundwater discharge (LGD) is important for understanding the dynamics of lake ecosystems and their expansion. This study focuses on Lake Qinghai, employing radium isotope models to evaluate the contributions of both shallow and deep groundwater. The data indicate that the activity of Ra and Ra demonstrates a pronounced gradient, decreasing from the shoreline to the center of Lake Qinghai.

View Article and Find Full Text PDF

Estuaries often experience multiple water quality impairments including nitrogen enrichment and elevated fecal pollution. These pollutant sources are often linked and difficult to characterize, especially in multiple use watersheds, hindering the identification of effective mitigation steps. Tillamook Bay (Oregon, USA) has a mixed-use watershed including many potential nutrient and fecal bacteria sources due to agricultural activities, human development, and local wildlife populations.

View Article and Find Full Text PDF

Solid phase extraction chromatography-based radiochemical isolation of cyclotron-produced Mn from enriched Fe targets.

Nucl Med Biol

December 2024

University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America; University of Wisconsin Department of Radiology, 600 Highland Avenue, Madison, WI 53792, United States of America. Electronic address:

We report DGA extraction chromatography isolation of Mn from isotopically enriched Fe. The method has been studied in semi-automated and automated realizations. The former achieves a decay corrected radiochemical yield of 78 ± 1 % (n = 3) and a separation factor of (1.

View Article and Find Full Text PDF

Deciphering the mineral code of urinary stones: A first look at zinc isotopes.

Environ Pollut

December 2024

Nu Instruments, Wrexham Industrial Estate, 74 Clywedog Road South, Wrexham, LL13 9XS, United Kingdom.

Zinc (Zn) is an essential element for all living organisms, and Zn isotopes play a key role in studying the formation of disease. Despite extensive studies on Zn isotopes in healthy and diseased human tissues, the role of Zn isotopes in urinary stones remains unexplored. This study investigates Zn isotopes in 37 urinary stones using multi-collector inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

The 3-chymotrypsin-like protease (3CL-PR; also known as Main protease) of SARS-CoV-2 is a cysteine protease that is the target of the COVID-19 drug, Paxlovid. Here, we report for 3CL-PR, the pH-rate profiles of a substrate, an inhibitor, affinity agents, and solvent kinetic isotope effects (sKIEs) obtained under both steady-state and pre-steady-state conditions. "Bell-shaped" plots of log( / ) vs pH for the substrate (Abz)SAVLQ*SGFRK(Dnp)-NH and p vs pH for a peptide aldehyde inhibitor demonstrated that essential acidic and basic groups of p = 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!