Background: Expression of the minor virion structural protein VP2 of the calicivirus murine norovirus (MNV) is believed to occur by the unusual mechanism of termination codon-dependent reinitiation of translation. In this process, following translation of an upstream open reading frame (ORF) and termination at the stop codon, a proportion of 40S subunits remain associated with the mRNA and reinitiate at the AUG of a downstream ORF, which is typically in close proximity. Consistent with this, the VP2 start codon (AUG) of MNV overlaps the stop codon of the upstream VP1 ORF (UAA) in the pentanucleotide UAAUG.

Principal Findings: Here, we confirm that MNV VP2 expression is regulated by termination-reinitiation and define the mRNA sequence requirements. Efficient reintiation is dependent upon 43 nt of RNA immediately upstream of the UAAUG site. Chemical and enzymatic probing revealed that the RNA in this region is not highly structured and includes an essential stretch of bases complementary to 18S rRNA helix 26 (Motif 1). The relative position of Motif 1 with respect to the UAAUG site impacts upon the efficiency of the process. Termination-reinitiation in MNV was also found to be relatively insensitive to the initiation inhibitor edeine.

Conclusions: The termination-reinitiation signal of MNV most closely resembles that of influenza BM2. Similar to other viruses that use this strategy, base-pairing between mRNA and rRNA is likely to play a role in tethering the 40S subunit to the mRNA following termination at the VP1 stop codon. Our data also indicate that accurate recognition of the VP2 ORF AUG is not a pre-requisite for efficient reinitiation of translation in this system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793014PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008390PLOS

Publication Analysis

Top Keywords

murine norovirus
8
reinitiation translation
8
uaaug site
8
mnv
5
expression vp2
4
vp2 protein
4
protein murine
4
translation
4
norovirus translation
4
termination-reinitiation
4

Similar Publications

The Sdp-SH3b2 domain contained in N6.2-derived extracellular vesicles inhibit murine norovirus replication.

Front Immunol

December 2024

Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.

The internalization of N6.2 extracellular vesicles (EVs) by cells results in a significant induction of the 2',5'-oligoadenylate synthetase (OAS) pathway. It also induces expression of and .

View Article and Find Full Text PDF

Disinfectant application to gloved hands before handling SPF mice is standard practice to minimize transmission of pathogens and microbial contamination between cages. The risk of contamination with murine pathogens on gloves as well as the efficacy of disinfectant application for this step is largely unknown. This study aimed to determine if murine norovirus (MNV), Helicobacter spp.

View Article and Find Full Text PDF

The continually high disease burden of influenza and the relatively low effectiveness of current influenza vaccines call for enhanced vaccine strategies. We previously generated unique S-HA1 pseudovirus nanoparticles (PVNPs) displaying the receptor binding HA1 antigens of the H7N9 subtype as an influenza vaccine candidate and characterized their features in biochemistry, biophysics, structure, and immune response. In this follow up study, we created new S-HA1 PVNPs displaying the HA1 antigens of other common influenza viruses, including two H1N1 strains, one H3N2 strain, and an influenza B virus, respectively.

View Article and Find Full Text PDF

Norovirus is a leading cause of gastroenteritis worldwide. The factors required for the life cycle and pathogenesis of norovirus in humans remain unclear. Mouse models of norovirus infection have been widely used to explore the crosstalk between norovirus and the host.

View Article and Find Full Text PDF
Article Synopsis
  • - Norovirus is a major cause of gastroenteritis globally, and its ability to infect cells is influenced by the arrangement of lipids in cell membranes, although this connection has not been fully explored.
  • - Research shows that the protein TMEM30a, which is part of lipid flippases, is essential for the replication of murine norovirus (MNV) and helps the virus bind and enter host cells.
  • - The study reveals that lipid asymmetry in cell membranes aids in MNV infection and persistence, challenging previous assumptions about cell markers, as certain lipids do not inhibit the virus but are instead linked to its successful entry.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!