Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: The effects of non-modified and oxidatively modified calf skin collagen type I on platelet aggregation and the oxidative burst of phagocytes were examined in the framework of a general hypothesis that collagen, platelets and phagocytes cooperate to modulate the oxidative burst of phagocytes and the extent of oxidative stress.
Materials And Methods: Calf skin collagen type I was subjected to oxidative modification by hydrogen peroxide or hydroxyl radical. Thermal denaturation of collagen was performed in a spectrophotometer equipped with a temperature gradient device. The aggregation of isolated human platelets obtained after differential centrifugation was measured using a dual-channel aggregometer. The production of reactive oxygen species by human whole blood phagocytes was evaluated by luminol-enhanced chemiluminescence.
Results: Oxidative modification of collagen samples was characterized by a decrease in denaturation transition temperature. Oxidatively modified samples showed a modified SDS-PAGE pattern, evidencing a significant destruction of the collagen. All oxidatively modified collagen samples, independent of the oxidation treatment applied, lost their platelet-aggregating and phagocyte oxidative burst-inducing activity.
Conclusion: The results suggest that reactive oxygen species were able to modify collagen. On the other hand, oxidatively modified collagen lost its activating properties towards platelets and phagocytes.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!