Rho kinase inhibition protects CA1 cells in organotypic hippocampal slices during in vitro ischemia.

Brain Res

Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184 Lund, Sweden.

Published: February 2010

The actin cytoskeleton is a dynamic superstructure that regulates multiple cellular functions and that has been implicated in cell death regulation. We investigated whether modulating the neuronal actin cytoskeleton polymerization by Rho-GTPase kinase (ROCK) inhibition influences cell death in hippocampal neuronal cultures and in murine organotypic hippocampal slice cultures subjected to in vitro ischemia (IVI). During IVI, spines on vehicle treated hippocampal neurons collapsed and large dendritic actin aggregates were formed. Following ROCK inhibition by Y27632, the actin aggregates were markedly smaller while large filopodia extended from the dendritic trunk. Y27632 also provided strong neuroprotection of hippocampal pyramidal CA1 neurons, which was of similar magnitude as protection by NMDA receptor blockade. Likewise, treatment with the F-actin depolymerizing agent latrunculin during IVI diminished actin aggregation and mitigated cell death following IVI. We propose that ROCK inhibition protects neurons against ischemic damage by disrupting actin polymerization thereby mitigating NMDA receptor induced toxicity and releasing ATP bound to actin for cellular energy use. We conclude that ROCK inhibitors abrogate multiple detrimental processes and could therefore be useful in stroke therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2009.11.087DOI Listing

Publication Analysis

Top Keywords

cell death
12
rock inhibition
12
inhibition protects
8
organotypic hippocampal
8
vitro ischemia
8
actin cytoskeleton
8
actin aggregates
8
nmda receptor
8
actin
7
hippocampal
5

Similar Publications

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.

View Article and Find Full Text PDF

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

Ferroptosis, an iron-dependent form of programmed cell death characterized by excessive lipid hydroperoxides accumulation, emerges as a promising target in cancer therapy. Among the solute carrier (SLC) superfamily, the cystine/glutamate transporter system antiporter components SLC3A2 and SLC7A11 are known to regulate ferroptosis by facilitating cystine import for ferroptosis inhibition. However, the contribution of additional SLC superfamily members to ferroptosis remains poorly understood.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!