Type 1 cannabinoid (CB1) receptors are expressed in high concentrations in the central nervous system, including the basal ganglia, and could have direct or indirect effects on motor behavior through modulation of dopaminergic, glutamatergic and GABA-ergic neurotransmission. Using the CB1 receptor radioligand [(18)F]MK-9470 and small-animal PET, we investigated for the first time in vivo cerebral changes in [(18)F]MK-9470 binding in the 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease (PD), parallel to dopamine transporter (DAT) imaging, tyrosine hydroxylase (TH) staining, and behavioral measurements. In the 6-OHDA model, relative [(18)F]MK-9470 PET binding decreased in the contralateral cerebellum (-9%, p<0.0004) and caudate-putamen bilaterally (ipsilateral -8%, contralateral -7%; p=0.001 and p<0.0003, respectively). The number of TH(+) neurons in the substantia nigra was inversely correlated to CB1 receptor binding in the ipsilateral cerebellum (p=1.10(-6)). The behavioral outcome was positively related to regional CB1 receptor binding in the contralateral somatosensory cortex (p=4.10(-6)). In vivo [(18)F]MK-9470 PET imaging points to changes in endocannabinoid transmission, specifically for CB1 receptors in the 6-OHDA model of PD, with mainly involvement of the caudate-putamen, but also distant regions of the motor circuitry, including the cerebellum and somatosensory cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2009.12.026DOI Listing

Publication Analysis

Top Keywords

type cannabinoid
8
rat model
8
model parkinson's
8
parkinson's disease
8
vivo type
4
cannabinoid receptor
4
receptor mapping
4
mapping 6-hydroxydopamine
4
6-hydroxydopamine lesion
4
lesion rat
4

Similar Publications

The growing demand for plant-based protein and natural food ingredients has further fueled interest in exploring hemp seeds ( L.) as a sustainable source of and nutrition. In addition to the content of proteins and healthy fats (linoleic acid and alpha-linolenic acid), hemp seeds are rich in phytochemical compounds, especially terpenoids, polyphenols, and phytosterols, which contribute to their bioactive properties.

View Article and Find Full Text PDF

Maladaptive changes in the homeostasis of AEA-TRPV1/CB1R induces pain-related hyperactivity of nociceptors after spinal cord injury.

Cell Biosci

January 2025

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.

Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.

View Article and Find Full Text PDF

Cannabinoid type-1 receptors in CaMKII neurons drive impulsivity in pathological eating behavior.

Mol Metab

January 2025

Leibniz Institute for Resilience Research, 55122 Mainz Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz Germany. Electronic address:

Overconsumption of palatable food and energy accumulation are evolutionary mechanisms of survival when food is scarce. This innate mechanism becomes detrimental in obesogenic environment promoting obesity and related comorbidities, including mood disorders. The endocannabinoid system favors energy accumulation and regulates reward circuits.

View Article and Find Full Text PDF

Ghrelin enhances feeding by activating the growth hormone secretagogue receptor (GHSR). In the brain, GHSRs are expressed in regions responsible for regulating food motivation including the ventral tegmental area (VTA). Endogenous cannabinoids also promote food seeking behaviors through the cannabinoid receptor 1 type (CB-1Rs) in brain regions including the VTA.

View Article and Find Full Text PDF

In corticostriatal nerve terminals, glutamate release is stimulated by adenosine via A receptors (ARs) and simultaneously inhibited by endocannabinoids via CB receptors (CBRs). We previously identified presynaptic AR-CBR heterotetrameric complexes in corticostriatal nerve terminals. We now explored the possible functional interaction between ARs and CBRs in purified striatal GABAergic nerve terminals (synaptosomes) and compared these findings with those on the release of glutamate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!