Functional analysis of human tRNA isodecoders.

J Mol Biol

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.

Published: February 2010

tRNA isodecoders share the same anticodon but have differences in their body sequence. An unexpected result from genome sequencing projects is the identification of a large number of tRNA isodecoder genes in mammalian genomes. In the reference human genome, more than 270 isodecoder genes are present among the approximately 450 tRNA genes distributed among 49 isoacceptor families. Whether sequence diversity among isodecoder tRNA genes reflects functional variability is an open question. To address this, we developed a method to quantify the efficiency of tRNA isodecoders in stop-codon suppression in human cell lines. First, a green fluorescent protein (GFP) gene that contains a single UAG stop codon at two distinct locations is introduced. GFP is only produced when a tRNA suppressor containing CUA anticodon is co-transfected with the GFP gene. The suppression efficiency is examined for 31 tRNA isodecoders (all contain CUA anticodon), 21 derived from four isoacceptor families of tRNASer genes, 7 from five families of tRNALeu genes, and 3 from three families of tRNAAla genes. We found that isodecoder tRNAs display a large difference in their suppression efficiency. Among those with above background suppression activity, differences of up to 20-fold were observed. We were able to tune tRNA suppression efficiency by subtly adjusting the tRNA sequence and inter-convert poor suppressors into potent ones. We also demonstrate that isodecoder tRNAs with varying suppression efficiencies have similar stability and exhibit similar levels of aminoacylation in vivo. Our results indicate that naturally occurring tRNA isodecoders can have large functional variations and suggest that some tRNA isodecoders may perform a function distinct from translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822071PMC
http://dx.doi.org/10.1016/j.jmb.2009.12.018DOI Listing

Publication Analysis

Top Keywords

trna isodecoders
24
trna
12
suppression efficiency
12
isodecoder genes
8
trna genes
8
isoacceptor families
8
gfp gene
8
cua anticodon
8
isodecoder trnas
8
genes
7

Similar Publications

Article Synopsis
  • * The research investigates how the m3C32 modification affects the structure of the anticodon stem loop in human tRNA-Arg-UCU-4-1, revealing that it can disrupt nearby base pairings while still stabilizing the overall structure.
  • * Although m3C32 modification leads to some structural changes, it maintains the essential pairing for tRNA function in translation, suggesting it may influence interactions with binding partners without compromising functionality.
View Article and Find Full Text PDF

The function of transfer RNAs (tRNAs) depends on enzymes that cleave primary transcript ends, add a 3' CCA tail, introduce post-transcriptional base modifications, and charge (aminoacylate) mature tRNAs with the correct amino acid. Maintaining an available pool of the resulting aminoacylated tRNAs is essential for protein synthesis. High-throughput sequencing techniques have recently been developed to provide a comprehensive view of aminoacylation state in a tRNA-specific fashion.

View Article and Find Full Text PDF

Over the course of evolution, land plant mitochondrial genomes have lost many transfer RNA (tRNA) genes and the import of nucleus-encoded tRNAs is essential for mitochondrial protein synthesis. By contrast, plastidial genomes of photosynthetic land plants generally possess a complete set of tRNA genes and the existence of plastidial tRNA import remains a long-standing question. The early vascular plants of the Selaginella genus show an extensive loss of plastidial tRNA genes while retaining photosynthetic capacity, and represent an ideal model for answering this question.

View Article and Find Full Text PDF
Article Synopsis
  • - Selenocysteine-containing proteins are crucial for maintaining redox balance, and their production relies on a specific modification of tRNA called Um34, which is facilitated by the methyltransferase FTSJ1.
  • - The absence of Um34 causes issues during translation, leading to problems like ribosomal stalling and reduced efficiency in translating selenocysteine at the UGA stop codon.
  • - Cells lacking FTSJ1 show increased sensitivity to oxidative stress and lower melanoma metastasis, indicating that FTSJ1 and Um34 modification are vital for the antioxidant response and could be targeted for therapeutic purposes.
View Article and Find Full Text PDF

Unlabelled: Transfer RNAs (tRNAs) are the key adaptor molecules aiding protein synthesis. Hundreds of tRNA genes are found in the human genome but the biological significance of this genetic excess is still enigmatic. The tRNA repertoires are variable between tissues and cells as well as during development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!