tRNA isodecoders share the same anticodon but have differences in their body sequence. An unexpected result from genome sequencing projects is the identification of a large number of tRNA isodecoder genes in mammalian genomes. In the reference human genome, more than 270 isodecoder genes are present among the approximately 450 tRNA genes distributed among 49 isoacceptor families. Whether sequence diversity among isodecoder tRNA genes reflects functional variability is an open question. To address this, we developed a method to quantify the efficiency of tRNA isodecoders in stop-codon suppression in human cell lines. First, a green fluorescent protein (GFP) gene that contains a single UAG stop codon at two distinct locations is introduced. GFP is only produced when a tRNA suppressor containing CUA anticodon is co-transfected with the GFP gene. The suppression efficiency is examined for 31 tRNA isodecoders (all contain CUA anticodon), 21 derived from four isoacceptor families of tRNASer genes, 7 from five families of tRNALeu genes, and 3 from three families of tRNAAla genes. We found that isodecoder tRNAs display a large difference in their suppression efficiency. Among those with above background suppression activity, differences of up to 20-fold were observed. We were able to tune tRNA suppression efficiency by subtly adjusting the tRNA sequence and inter-convert poor suppressors into potent ones. We also demonstrate that isodecoder tRNAs with varying suppression efficiencies have similar stability and exhibit similar levels of aminoacylation in vivo. Our results indicate that naturally occurring tRNA isodecoders can have large functional variations and suggest that some tRNA isodecoders may perform a function distinct from translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822071 | PMC |
http://dx.doi.org/10.1016/j.jmb.2009.12.018 | DOI Listing |
bioRxiv
November 2024
Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, United States.
Plant J
December 2024
Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
The function of transfer RNAs (tRNAs) depends on enzymes that cleave primary transcript ends, add a 3' CCA tail, introduce post-transcriptional base modifications, and charge (aminoacylate) mature tRNAs with the correct amino acid. Maintaining an available pool of the resulting aminoacylated tRNAs is essential for protein synthesis. High-throughput sequencing techniques have recently been developed to provide a comprehensive view of aminoacylation state in a tRNA-specific fashion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg F-67084, France.
Over the course of evolution, land plant mitochondrial genomes have lost many transfer RNA (tRNA) genes and the import of nucleus-encoded tRNAs is essential for mitochondrial protein synthesis. By contrast, plastidial genomes of photosynthetic land plants generally possess a complete set of tRNA genes and the existence of plastidial tRNA import remains a long-standing question. The early vascular plants of the Selaginella genus show an extensive loss of plastidial tRNA genes while retaining photosynthetic capacity, and represent an ideal model for answering this question.
View Article and Find Full Text PDFNat Cancer
December 2024
Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Unlabelled: Transfer RNAs (tRNAs) are the key adaptor molecules aiding protein synthesis. Hundreds of tRNA genes are found in the human genome but the biological significance of this genetic excess is still enigmatic. The tRNA repertoires are variable between tissues and cells as well as during development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!