Decompaction of DNA-CTA self-assembled complexes by 2-hydroxypropyl-beta-cyclodextrin (2-HP-beta-CD) was studied and the results were compared with beta-CD. Different degrees of 2-HP substitution (0.6, 0.8 and 1.0, respectively) were used and the decompaction was successful with all degrees of substitution. Fluorescence microscopy, steady state fluorescence spectroscopy, density and sound velocity measurements, thermal melting and circular dichroism were used. Compared to previous work using alpha- and beta-CD, the fluorescence spectroscopy results showed that the 2-HP-substituted CDs more efficiently released DNA into solution. Furthermore, dissociation of macroscopically phase separated DNA-CTA complexes was achieved upon addition of 2-HP-beta-CD and the results gave strong indications on the non-equilibrium nature of the system. The globule-to-coil transition was not found to proceed through a coexistence region, which seems to be a general phenomenon in DNA decompaction using CDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2009.12.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!