The purpose of this study was to assess quantitatively the differences in morphology, cytoskeletal organization and mechanical behavior between quiescent corneal keratocytes and activated fibroblasts in a 3-D culture model. Primary cultures of rabbit corneal keratocytes and fibroblasts were plated inside type I collagen matrices in serum-free media or 10% FBS, and allowed to spread for 1-5 days. Following F-actin labeling using phalloidin, and immunolabeling of tubulin, alpha-smooth muscle actin or connexin 43, fluorescent and reflected light (for collagen fibrils) 3-D optical section images were acquired using laser confocal microscopy. In other experiments, dynamic imaging was performed using differential interference contrast microscopy, and finite element modeling was used to map ECM deformations. Corneal keratocytes developed a stellate morphology with numerous cell processes that ran a tortuous path between and along collagen fibrils without any apparent impact on their alignment. Fibroblasts on the other hand, had a more bipolar morphology with pseudopodial processes (P

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822042PMC
http://dx.doi.org/10.1016/j.exer.2009.11.016DOI Listing

Publication Analysis

Top Keywords

corneal keratocytes
12
collagen matrices
8
collagen fibrils
8
characterization corneal
4
corneal keratocyte
4
morphology
4
keratocyte morphology
4
morphology mechanical
4
mechanical activity
4
activity 3-d
4

Similar Publications

Globally there is a shortage of available donor corneas with only 1 cornea available for every 70 needed. A large limitation to corneal transplant surgery is access to quality donor tissue due to inadequate eye donation services and infrastructure in many countries, compounded by the fact that there are few available long-term storage solutions for effectively preserving spare donor corneas collected in countries with a surplus. In this study, we describe a novel technology termed low-temperature vacuum evaporation (LTVE) that can effectively dry-preserve surplus donor corneal tissue, allowing it to be stored for approximately 5 years, shipped at room temperature, and stored on hospital shelves before rehydration prior to ophthalmic surgery.

View Article and Find Full Text PDF

Chemical eye injuries occur in home, industrial, and military settings. The standard recommended treatment after exposure of the eyes to chemical toxins is washing with tap water for at least 15 min. An estimated 80 % of ocular toxins are associated with reactive oxygen species and/or extreme pH.

View Article and Find Full Text PDF

Biologically inspired bioactive hydrogels for scarless corneal repair.

Sci Adv

December 2024

Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China.

Corneal injury-induced fibrosis occurs because of corneal epithelial basement membrane (EBM) injury and defective regeneration. Corneal fibrosis inhibition and transparency restoration depend on reestablished EBM, where the collagen network provides structural stability and heparan sulfate binds corneal epithelium-derived cytokines to regulate homeostasis. Inspired by this, bioactive hydrogels (Hep@Gel) composed of collagen-derived gelatins and highly anionic heparin were constructed for scarless corneal repair.

View Article and Find Full Text PDF

Corneal lubrication is the most common treatment for relieving the signs and symptoms of dry eye and is considered to be largely palliative with no regenerative functions. Here we challenge this notion by demonstrating that wetting the desiccated cornea of an aqueous-deficient mouse model with the simplest form of lubrication, a saline-based solution, is sufficient to rescue the severely disrupted collagen-rich architecture of the stroma, the largest corneal compartment that is essential to transparency and vision. At the single cell level we show that stromal keratocytes responsible for maintaining stromal integrity are converted from an inflammatory state into unique reparative cell states by lubrication alone, thus revealing the extensive plasticity of these cells and the regenerative function of lubricating the surface.

View Article and Find Full Text PDF

The cornea is the transparent part of the eye's outer sheath and the primary refractive element in the optical system of all vertebrates allowing light to focus on the central part of the retina. Maintenance of its curvature and clarity is therefore essential, providing a smooth optical surface and a protective goggle to ensure a focused image on the retina. However, the corneas of birds have been largely overlooked and the structures and mechanisms controlling corneal shape and hence visual acuity remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!