Ca(2+ )binding proteins are essential for regulating the role of Ca(2+ )in cell signaling and maintaining Ca(2+ )homeostasis. Negatively charged residues such as Asp and Glu are often found in Ca(2+ )binding proteins and are known to influence Ca(2+ )binding affinity and protein stability. In this paper, we report a systematic investigation of the role of local charge number and type of coordination residues in Ca(2+ )binding and protein stability using de novo designed Ca(2+ )binding proteins. The approach of de novo design was chosen to avoid the complications of cooperative binding and Ca(2+)-induced conformational change associated with natural proteins. We show that when the number of negatively charged coordination residues increased from 2 to 5 in a relatively restricted Ca(2+)-binding site, Ca(2+ )binding affinities increased by more than 3 orders of magnitude and metal selectivity for trivalent Ln(3+ )over divalent Ca(2+ )increased by more than 100-fold. Additionally, the thermal transition temperatures of the apo forms of the designed proteins decreased due to charge repulsion at the Ca(2+ )binding pocket. The thermal stability of the proteins was regained upon Ca(2+ )and Ln(3+ )binding to the designed Ca(2+ )binding pocket. We therefore observe a striking tradeoff between Ca(2+)/Ln(3+ )affinity and protein stability when the net charge of the coordination residues is varied. Our study has strong implications for understanding and predicting Ca(2+)-conferred thermal stabilization of natural Ca(2+ )binding proteins as well as for designing novel metalloproteins with tunable Ca(2+ )and Ln(3+ )binding affinity and selectivity.PACS codes: 05.10.-a.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2816670 | PMC |
http://dx.doi.org/10.1186/1757-5036-2-11 | DOI Listing |
Pharmaceutics
November 2024
Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
The effect of 2-hydroxpropyl-β-cyclodextrin (2HPβCD) with or without divalent metal ions (Ca, Mg, and Zn) on the stability of dalbavancin in acetate buffer was investigated. Dalbavancin recovery from formulations with 2HPβCD and divalent metal ions after four weeks of storage at 5 °C and 55 °C was measured by RP-HPLC and HP-SEC; a longer-term study was carried out over six months at 5 °C, 25 °C, and 40 °C. Binding of 2HPβCD was characterized by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
In order to investigate the mechanism of mechanical performance enhancement and the curing mechanisms of acrylate emulsion (AE) in cement and magnesium slag (MS) composite-stabilized soil (AE-C-M), this study has conducted a comprehensive analysis of the compressive strength and microstructural characteristics of AE-C-M stabilized soil. The results show that the addition of AE significantly improves the compressive strength of the stabilized soil. When the AE content is 0.
View Article and Find Full Text PDFNutrients
December 2024
Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain.
: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Relmada Therapeutics, Inc., Coral Gables, FL 33134, USA.
Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators.
View Article and Find Full Text PDFCells
December 2024
Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, USA.
Over 200 point mutations in the ryanodine receptor (RyR2) of the cardiac sarcoplasmic reticulum (SR) are known to be associated with cardiac arrhythmia. We have already reported on the calcium signaling phenotype of a point mutation in RyR2 Ca binding site Q3925E expressed in human stem-cell-derived cardiomyocytes (hiPSC-CMs) that was found to be lethal in a 9-year-old girl. CRISPR/Cas9-gene-edited mutant cardiomyocytes carrying the RyR2-Q3925E mutation exhibited a loss of calcium-induced calcium release (CICR) and caffeine-triggered calcium release but continued to beat arrhythmically without generating significant SR Ca release, consistent with a remodeling of the calcium signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!