Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cystic fibrosis (CF) is a chronic progressive disorder characterized by repeated episodes of respiratory infection. Impaired sleep is common in CF leading to reduced quality of life. Melatonin, a secretory product of the pineal gland, has an important function in the synchronization of circadian rhythms, including the sleep-wake cycle, and has been shown to possess significant anti-oxidant properties. To evaluate the effects of exogenous melatonin on sleep and inflammation and oxidative stress markers in CF, a randomized double-blind, placebo-controlled study initially involving 20 patients with CF was conducted. One individual failed to conclude the study. All subjects were clinically stable when studied and without recent infectious exacerbation or hospitalization in the last 30 days. Groups were randomized for placebo (n = 10; mean age 12.1 +/- 6.0) or 3 mg melatonin (n = 9; mean age 16.6 +/- 8.26) for 21 days. Actigraphy was performed for 6 days before the start of medication and in the third week (days 14-20) of treatment. Isoprostane and nitrite levels were determined in exhaled breath condensate (EBC) at baseline (day 0) and after treatment (day 21). Melatonin improved sleep efficiency (P = 0.01) and tended to improve sleep latency (P = 0.08). Melatonin reduced EBC nitrite (P = 0.01) but not isoprostane. In summary, melatonin administration reduces nitrite levels in EBC and improves sleep measures in clinically stable CF patients. The failure of melatonin to reduce isoprostane levels may have been a result of the low dose of melatonin used as a treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-079X.2009.00726.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!