Prion diseases (e.g., Creutzfeldt-Jakob disease in humans) are always fatal neurodegenerative disorders characterized by conversion of the ubiquitous cellular prion protein (PrP(c)) into a pathological conformer. Immunological strategies are considered as promising prophylactic or therapeutic approaches but, unfortunately, vaccination attempts until now have been very disappointing in wild-type animals because of immune tolerance to self PrP(c). Encouraging results have come from recent experiments carried out through genetic immunization (i.e., injection in mice of cDNA coding for murine prion protein [PrP]) or heterologous protein immunization (i.e., injection in mice of PrP from another species), albeit the levels of autoantibodies in wild-type animals remained generally low. Here we investigated whether combining the potential benefits of these two last approaches, namely using genetic immunization with the cDNA coding for a heterologous PrP, could more efficiently break immune tolerance. Wild-type mice were thus vaccinated with cDNA coding for human PrP(c), fused or unfused to a stimulatory T-cell epitope, using or not using electrotransfer of DNA. After three DNA injections, mice receiving electrotransferred DNA developed a strong immune response, oriented toward the humoral Th2 type, characterized not only by high IgG1 and IgG2a antibody titers against the heterologous human PrP(c), but also, as expected, by significant amounts of autoantibodies recognizing the native conformation of murine PrP(c) expressed on cell membranes as revealed by flow cytometry and immunofluorescence. These results hence open the way for investigation of the possible protective effects of anti-PrP(c) autoantibodies in infected mouse models. More generally, our results suggest that this original immunization strategy could be of value for circumventing tolerance to poorly immunogenic proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dna.2009.0940DOI Listing

Publication Analysis

Top Keywords

cdna coding
16
prion protein
16
coding heterologous
8
murine prion
8
wild-type mice
8
wild-type animals
8
immune tolerance
8
genetic immunization
8
immunization injection
8
injection mice
8

Similar Publications

Taurine and betaine are important nutrients in and have many important biological properties. To investigate the characteristics of taurine and betaine contents and identify SNPs associated with traits in the , we cloned the full-length cDNA of key genes in taurine and betaine (unpublished data) metabolism, determined taurine and betaine content and gene expression in different tissues and months of specimen collection, and developed SNPs in the gene coding region. We cloned the full-length cDNA of cysteine dioxygenase ( ) and cysteine sulfite decarboxylase ( ), which are key genes involved in taurine metabolism in , and found that betaine and taurine contents and the expression of key genes were regulated by seawater salinity.

View Article and Find Full Text PDF

Introduction: Long non-coding RNAs (lncRNAs) are a subset of RNA molecules that have been shown to be involved in gene regulation. A lot of different pathways are involved during gametogenesis and any disturbance to these pathways may have a derogatory impact on producing a haploid gamete and thus a euploid embryo. Steroidogenesis pathway plays a crucial role in gametogenesis.

View Article and Find Full Text PDF

[Prokaryotic expression and helicase activity analysis of PDCoV NSP13].

Sheng Wu Gong Cheng Xue Bao

December 2024

College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.

Article Synopsis
  • Porcine deltacoronavirus (PDCoV) causes severe diarrhea in piglets, and effective prevention methods are currently lacking.
  • Researchers synthesized the PDCoV gene to create a recombinant plasmid that expressed the nonstructural protein 13 (NSP13), which has crucial helicase activity.
  • The study confirmed NSP13's ability to unwind DNA and its regulatory factors, offering insights for future antiviral drug development aimed at combatting PDCoV.
View Article and Find Full Text PDF

is one of the most common pathogens causing reproductive failure in ruminants (e.g., cattle and goats) worldwide.

View Article and Find Full Text PDF

Enzyme fragment complementation driven by nucleic acid hybridization sans self-labeling protein.

Bioorg Chem

December 2024

Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York 13902, USA. Electronic address:

A modified enzyme fragment complementation assay has been designed and validated as a turn-on biosensor for nucleic acid detection in dilute aqueous solution. The assay is target sequence-agonistic and uses fragments of NanoBiT, the split luciferase reporter enzyme, that are esterified enzymatically at their C-termini to steramers, sterol-linked oligonucleotides. The Drosophila hedgehog autoprocessing domain, DHhC, serves as the self-cleaving enzyme for the NanoBiT-steramer bioconjugations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!