N-Centred benzene-1,3,5-tricarboxamides (N-BTAs) composed of chiral and achiral alkyl substituents were synthesised and their solid-state behaviour and self-assembly in dilute alkane solutions were investigated. A combination of differential scanning calorimetry (DSC), polarisation optical microscopy (POM) and X-ray diffraction revealed that the chiral N-BTA derivatives with branched 3,7-dimethyloctanoyl chains were liquid crystalline and the mesophase was assigned as Col(ho). In contrast, N-BTA derivatives with linear tetradecanoyl or octanoyl chains lacked a mesophase and were obtained as crystalline compounds. Variable-temperature infrared spectroscopy showed the presence of threefold, intermolecular hydrogen bonding between neighbouring molecules in the mesophase of the chiral N-BTAs. In the crystalline state at room temperature a more complicated packing between the molecules was observed. Ultraviolet and circular dichroism spectroscopy on dilute solutions of N-BTAs revealed a cooperative self-assembly behaviour of the N-BTA molecules into supramolecular polymers with preferred helicity when chiral alkyl chains were present. Both the sergeants-and-soldiers as well as the majority-rules principles were operative in stacks of N-BTAs. In fact, the self-assembly of N-BTAs resembles closely that of their carbonyl (C=O)-centred counterparts, with the exception that aggregation is weaker and amplification of chirality is less pronounced. The differences in the self-assembly of N- and C=O-BTAs were analysed by density functional theory (DFT) calculations. These reveal a substantially lower interaction energy between the monomeric units in the supramolecular polymers of N-BTAs. The lower interaction energy is due to the higher energy penalty for rotation around the Ph--NH bond compared to the Ph--CO bond and the diminished magnitude of dipole-dipole interactions. Finally, we observed that mixed stacks are formed in dilute solution when mixing N-BTAs and C=O BTAs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200902635DOI Listing

Publication Analysis

Top Keywords

supramolecular polymers
12
amplification chirality
8
n-bta derivatives
8
lower interaction
8
interaction energy
8
n-btas
7
dynamic supramolecular
4
polymers based
4
based benzene-135-tricarboxamides
4
benzene-135-tricarboxamides influence
4

Similar Publications

Supramolecular polymers represent a distinctive class of polymers exhibiting similarities with covalent polymers, while also showcasing distinctive attributes such as responsiveness, reversibility, self-healing, and dynamism, which are conferred upon them by non-covalent interactions including hydrogen bonding, electrostatic interactions, van der Waals forces, π-π arrangements, and donor-acceptor interactions, among others. The noteworthy features of these supramolecular polymers have attracted considerable interest across diverse fields of science and technology, spanning electrochemistry, environmental science, drug delivery and tissue engineering. Nonetheless, the prevailing research focus in the realm of supramolecular polymers revolves around the advancement of novel methodologies aimed at synthesizing a broad spectrum of polymers characterized by diverse topologies.

View Article and Find Full Text PDF

Enantiomer-Dependent Supramolecular Antibacterial Therapy for Drug-Resistant Bacterial Keratitis.

Langmuir

January 2025

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

Bacteria have the potential to exhibit divergent stereochemical preferences for different levels of chiral structures, including from molecule, supramolecule, to nanomicroscale helical structure. Accordingly, the structure-activity relationship between chirality and bactericidal activity remains uncertain. In this study, we seek to understand the multivalent molecular chirality effect of chiral supramolecular polymers on antibacterial activity.

View Article and Find Full Text PDF

Exploring Supramolecular Frustrated Lewis Pairs.

Chempluschem

January 2025

Keele University, School of Chemical & Physical Sciences, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Frustrated Lewis pairs (FLPs) have rapidly become one of the key metal-free catalysts for a variety of chemical transformations. Embedding these catalysts within a supramolecular assembly can offer improvements to factors such as recyclability and selectivity. In this review we discuss advances in this area, covering key supramolecular assemblies such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), polymers and macrocycles.

View Article and Find Full Text PDF

Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.

View Article and Find Full Text PDF

Self-assembly processes of 2D Au(I)-S(CH)COOH lamellae.

Nanoscale

January 2025

State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Solving the assembled structure of Au(I)-thiolate linear coordination polymers has been a challenging task as they generally lack good crystallinity. This has prevented the elucidation of their assembly processes at the molecular level. In this paper, selected area electron diffraction (SAED) patterns of two-dimensional (2D) Au(I)-S(CH)COOH (Au(I)-MPA) lamellae are obtained by applying cryogenic transmission electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!