Phenotypes of stem cells from diverse origin.

Cytometry A

Department of Pediatric Cardiology, Heart Centre, University Leipzig, Germany.

Published: January 2010

Stem cells have turned into promising tools for studying the mechanisms of development, regeneration, and for cell therapy of various disorders. Stem cells are found in the embryo and in most adult tissues participating in endogenous tissue regeneration. They are capable of autorenovation, often maintain their multipotency of differentiation into various tissues of their germ line and are, therefore, ideal candidates for cellular therapy taken that they can be unequivocally identified and isolated. In this review, we report stem cell marker expression used for identification of various stem cell lineages, including very small embryonic stem cells, neural, hematopoietic, mesenchymal, epithelial and limbal epithelial stem cells, endothelial progenitor cells, supra-adventitial adipose stromal cells, adipose pericytes, and cancer stem cells. These cells usually cannot be distinguished by a single stem cell marker, because their expression partially overlaps between lineages. Recent advances in flow cytometry allowing the simultaneous detection of various markers have facilitated stem cell identification for clinical diagnosis and research. So far experimental evidence suggests the existence of cells with different properties, i.e., the capability to different in various cell types. Several studies indicate that expression of classical markers for stem cell classification, such as CD34, CD45, and CD133, may differ between the virtually same stem and progenitor cells, i.e., endothelial progenitor or mesenchymal stem cells, when they were obtained from different tissues. This finding raises questions whether phenotypic differences are due to the source or if it is only caused by different isolation and experimental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.20844DOI Listing

Publication Analysis

Top Keywords

stem cells
28
stem cell
20
cells
12
stem
12
cell marker
8
marker expression
8
cells endothelial
8
endothelial progenitor
8
progenitor cells
8
cell
7

Similar Publications

MiRNAs: main players of cancer drug resistance target ABC transporters.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.

Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters.

View Article and Find Full Text PDF

De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).

View Article and Find Full Text PDF

CD9/SOX2-positive cells in the intermediate lobe of the rat pituitary gland exhibit mesenchymal stem cell characteristics.

Cell Tissue Res

January 2025

Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.

Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.

View Article and Find Full Text PDF

Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Curr Obes Rep

January 2025

Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.

Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.

Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.

View Article and Find Full Text PDF

The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!