Fgfrl1 (also known as Fgfr5; OMIM 605830) homozygous null mice have thin, amuscular diaphragms and die at birth because of diaphragm hypoplasia. FGFRL1 is located at 4p16.3, and this chromosome region can be deleted in patients with congenital diaphragmatic hernia (CDH). We examined FGFRL1 as a candidate gene for the diaphragmatic defects associated with 4p16.3 deletions and re-sequenced this gene in 54 patients with CDH. We confirmed six known coding single nucleotide polymorphisms (SNPs): c.209G > A (p.Pro20Pro), c.977G > A (p.Pro276Pro), c.1040T > C (p.Asp297Asp), c.1234C > A (p.Pro362Gln), c.1420G > T (p.Arg424Leu), and c.1540C > T (p.Pro464Leu), but we did not identify any gene mutations. We genotyped additional CDH patients for four of these six SNPs, including the three non-synonymous SNPs, to make a total of 200 chromosomes, and found that the allele frequency for the four SNPs, did not differ significantly between patients and normal controls (p > or = 0.05). We then used Affymetrix Genechip Mouse Gene 1.0 ST arrays and found eight genes with significantly reduced expression levels in the diaphragms of Fgfrl1 homozygous null mice when compared with wildtype mice-Tpm3, Fgfrl1 (p = 0.004), Myl2, Lrtm1, Myh4, Myl3, Myh7 and Hephl1. Lrtm1 is closely related to Slit3, a protein associated with herniation of the central tendon of the diaphragm in mice. The Slit proteins are known to regulate axon branching and cell migration, and inhibition of Slit3 reduces cell motility and decreases the expression of Rac and Cdc42, two genes that are essential for myoblast fusion. Further studies to determine if Lrtm1 has a similar function to Slit3 and if reduced Fgfrl1 expression can cause diaphragm hypoplasia through a mechanism involving decreased myoblast motility and/or myoblast fusion, seem indicated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893560PMC
http://dx.doi.org/10.1007/s00439-009-0777-8DOI Listing

Publication Analysis

Top Keywords

null mice
12
fgfrl1 candidate
8
candidate gene
8
gene diaphragmatic
8
diaphragmatic defects
8
reduced expression
8
homozygous null
8
diaphragm hypoplasia
8
myoblast fusion
8
fgfrl1
7

Similar Publications

Ferredoxin 1 and 2 (FDX1/2) constitute an evolutionarily conserved FDX family of iron-sulfur cluster (ISC) containing proteins. FDX1/2 are cognate substrates of ferredoxin reductase (FDXR) and serve as conduits for electron transfer from NADPH to a set of proteins involved in biogenesis of steroids, hemes, ISC and lipoylated proteins. Recently, we showed that Fdx1 is essential for embryonic development and lipid homeostasis.

View Article and Find Full Text PDF

TMC7 is required for spermiogenesis and male fertility by regulating TGN-derived vesicles.

Int J Biol Macromol

December 2024

State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Infertility affects 10-12 % of couples worldwide, 50 % of which are male. Abnormal spermatogenesis is among the main causes of male infertility. We were curious about the possible role of transmembrane channel-like protein 7 (TMC7) in spermatogenesis because of its aberrant expression in several male infertility patients.

View Article and Find Full Text PDF

Hoxa5 plays numerous roles in development, but its downstream molecular effects are mostly unknown. We applied bulk RNA-seq assays to characterize the transcriptional impact of the loss of Hoxa5 gene function in seven different biological contexts, including developing respiratory and musculoskeletal tissues that present phenotypes in Hoxa5 mouse mutants. This global analysis revealed few common transcriptional changes, suggesting that HOXA5 acts mainly via the regulation of context-specific effectors.

View Article and Find Full Text PDF

Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.

View Article and Find Full Text PDF

Background & Aims: EGF-containing fibulin extracellular matrix protein 1 (EFEMP1, also called fibulin-3) is an extracellular matrix protein linked in a genome-wide association study to biliary atresia, a fibrotic disease of the neonatal extrahepatic bile duct. Fibulin-3 is deposited in most tissues and null mice have decreased elastic fibers in visceral fascia; however, fibulin-3 does not have a role in the development of large elastic fibers and its overall function in the extrahepatic bile ducts remains unclear.

Methods: We used staining and histology to define the amount and organization of key extracellular matrix components in the extrahepatic bile ducts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!