The low field ESR lineshape and the electron spin-lattice relaxation correlation function are calculated using the stochastic Liouville theory for an effective electron spin quantum number S = 1. When an axially symmetric permanent zero field splitting provides the dominant relaxation mechanism, and when it is much larger than the rotational diffusion constant, it is shown that both electron spin correlation functions S(0)S(t) (n = 0,1) are characterized by the same relaxation time tau(S) = (4D(R))(-1). This confirms the conjectures made by Schaefle and Sharp, J. Chem. Phys., 2004, 121, 5287 and by Fries and Belorizky, J. Chem. Phys., 2005, 123, 124510, based on numerical results using a different formalism. The stochastic Liouville approach also gives the paramagnetically enhanced nuclear spin relaxation time constants, T(1) and T(2), and the ESR lineshape function I(omega). In particular, the L-band (B(0) = 0.035 T) ESR spectrum of a low symmetry Ni(ii)-complex with a cylindrical ZFS tensor is shown to be detectable at sufficiently slowly reorientation of the complex. The analysis shows that the L-band spectrum becomes similar to the zero-field spectrum with a electron spin relaxation time tau(S) = (4D(R))(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b916999g | DOI Listing |
Environ Res
January 2025
School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China.
The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
A small but growing set of radical SAM (-adenosyl-l-methionine) enzymes catalyze the radical mediated dehydration or dehydrogenation of 1,2-diol substrates. In some cases, these activities can be interchanged via minor structural perturbations to the reacting components raising questions regarding the relative importance of hyperconjugation, proton circulation and leaving group stability in determining the reaction outcome. The present work describes trapping and electron paramagnetic resonance (EPR) characterization of an α-hydroxyalkyl radical intermediate during dehydration and dehydrogenation of cytosylglucuronic acid and its derivatives catalyzed by the radical SAM enzyme BlsE and its Glu189Ala mutant from the blasticidin S biosynthetic pathway.
View Article and Find Full Text PDFMolecules
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA.
Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania.
Infections continue to pose significant challenges in dentistry, necessitating the development of innovative solutions that can effectively address these issues. This study focuses on creating coatings made from polymethyl methacrylate (PMMA) enriched with zinc oxide-silver composite nanoparticles, layered to Ti6Al4V-titanium alloy substrates. The application of these materials aims to create a solution for the abutments utilized in complete dental implant systems, representing the area most susceptible to bacterial infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!