Interaction of internally mixed aerosols with light.

Phys Chem Chem Phys

Department of Environmental Sciences, Weizmann Institute, Rehovot, 76100, Israel.

Published: January 2010

Atmospheric aerosols scatter and absorb solar radiation leading to variable effects on Earth's radiative balance. Aerosols individually comprising mixtures of different components ("internally mixed") interact differently with light than mixtures of aerosols, each comprising a different single component ("externally mixed"), even if the relative fractions of the different components are equal. In climate models, the optical properties of internally mixed aerosols are generally calculated by using electromagnetic "mixing rules", which average the refractive indices of the individual components in different proportions, or by using coated-sphere Mie scattering codes, which solve the full light scattering problem assuming that the components are divided into two distinct layers. Because these calculation approaches are in common use, it is important to validate them experimentally. In this article, we present a broad perspective on the optical properties of internally mixed aerosols based on a series of laboratory experiments and theoretical calculations. The optical properties of homogenously mixed aerosols comprised of non-absorbing and weakly absorbing compounds, and of coated aerosols comprised of strongly absorbing, non-absorbing, and weakly absorbing compounds in different combinations are measured using pulsed and continuous wave cavity ring down aerosol spectrometry (CRD-AS). The success of electromagnetic mixing rules and Mie scattering codes in reproducing the measured aerosol extinction values is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b913176kDOI Listing

Publication Analysis

Top Keywords

mixed aerosols
16
internally mixed
12
optical properties
12
aerosols
8
properties internally
8
mie scattering
8
scattering codes
8
aerosols comprised
8
non-absorbing weakly
8
weakly absorbing
8

Similar Publications

Background: E-cigarette, or vaping products produce an aerosol by heating nicotine, or cannabis including tetrahydrocannabinol (THC) and cannabidiol (CBD), mixed with other chemicals that help make the aerosol. They are increasingly popular among teenagers and young adults, with a 2023 survey reporting that 2.13 million middle and high school students in the United States used e-cigarettes within the last 30 days.

View Article and Find Full Text PDF

Characterization of particulate matter at Mt. Gwanak (at 632 m) and vertical mixing impacts on haze in Seoul during winter.

Sci Total Environ

December 2024

Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea. Electronic address:

This study investigates the sources, chemical composition, and vertical transport of particulate matter (PM) at Mt. Gwanak in southeastern Seoul, focusing on differences between surface and elevated altitudes during winter 2021. Using a time-of-flight aerosol chemical species mass spectrometer (ToF-ACSM), PM was measured at 632 m.

View Article and Find Full Text PDF

Background: Sample collection is a key driver of accuracy in the diagnosis of SARS-CoV-2 infection. Viral load may vary at different anatomical sampling sites and accuracy may be compromised by difficulties obtaining specimens and the expertise of the person taking the sample. It is important to optimise sampling accuracy within cost, safety and accessibility constraints.

View Article and Find Full Text PDF

Pirfenidone microcrystals for pulmonary delivery: Regulation of the precipitation behavior in the supercooled droplet.

Int J Pharm

December 2024

Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China. Electronic address:

Pirfenidone (PFD) is one of the first-line drugs for treating idiopathic pulmonary fibrosis, while directly delivering PFD to lung showed better efficiency. However, PFD is a non-glass former and easily precipitates into larger-sized crystals that are undesirable for pulmonary delivery. Hence, the fabrication of PFD particles with pulmonary delivery efficiency remains challenging.

View Article and Find Full Text PDF

Spatiotemporal distribution of chlorophyll-a concentration in the south China sea and its possible environmental regulation mechanisms.

Mar Environ Res

December 2024

College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Research Center for Coastal Environmental Protection and Ecological Resilience, Guangdong Ocean University, Zhanjiang, China; Cooperative Research Center for Nearshore Marine Environmental Change, Guangdong Ocean University, Zhanjiang, China. Electronic address:

In this paper, the spatial and temporal distribution of chlorophyll-a (Chl-a) concentration in the South China Sea (SCS) and its major environmental regulator mechanisms were studied by using satellite remote sensing data sea surface temperature (SST), sea surface wind (SSW), and aerosol optical depth (AOD) spanning from January 2000 to December 2022. The results show that Chl-a in the SCS exhibit notable spatio-temporal variations: they peak in winter (∼0.234 mg m) and autumn (∼0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!