The essential role of O affinity in the directed assembly of size-selected Au and Fe nanoparticles (NPs) on a TiO(x)/Pt(111) ultrathin oxide phase, an effective template for size selected metal NP growth, is revealed through scanning tunneling microscopy and density-functional calculations. A weakly interacting element (Au) diffuses rapidly and gets trapped in the vacancy defects (picoholes) located inside parallel rows (troughs, spaced 1.44 nm apart) peculiar to the film structure, producing size-selected NPs arranged in regular linear arrays aligned along the troughs. In contrast, an element with greater O affinity (Fe) experiences higher diffusion barriers, and the growth is dominated by kinetic effects, with a less effective preferential nucleation and the appearance of irregular NP morphologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b915641k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!