The kinetics scheme for directly excited, photoreversible reactions is solved exactly under the assumptions of no irreversible side reactions and constant excitation intensity for the duration of the reaction. The advantages of the methodology over the extrapolation-to-zero-time and the back-reaction correction methods are (i) that the quantum yields of both the forward and reverse photoreactions can be obtained starting from either pure reactant or pure product and (ii) the conversion percentage is not limited to a narrow domain in the neighborhood of small conversions. Examples of E-Z photoisomerizations are given to illustrate the fitting procedures required. The results from these examples are compared to the photoisomerization method of extrapolating the empirical quantum yields to zero time and the back-reaction correction. The exact equations are used to justify the extrapolation-to-zero-time method and to establish criteria on extrapolation ranges for the conversion percentage of starting material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b907242j | DOI Listing |
J Fluoresc
January 2025
Electrical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India.
Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.
View Article and Find Full Text PDFPLoS One
January 2025
College of Physics and Electronic Engineering, Hainan Normal University, HaiKou, China.
We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands.
We present the synthesis, structural analysis, and remarkable reactivity of the first carbon nanohoop that fully incorporates ferrocene in the macrocyclic backbone. The high strain imposed on the ferrocene by the curved nanohoop structure enables unprecedented photochemical reactivity of this otherwise photochemically inert metallocene complex. Visible light activation triggers a ring-opening of the nanohoop structure, fully dissociating the Fe-cyclopentadienyl bonds in the presence of 1,10-phenanthroline.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
Based on nitrogen and phosphorus co-doped carbon dots (NP-CDs), a direct, quick, and selective sensing probe for fluorometric detection of rutin has been developed. Utilizing ethylene diamine tetra acetic acid (EDTA) as a carbon and nitrogen source and diammonium hydrogen phosphate (NH)HPO as a nitrogen and phosphorus source. The NP-CDs were synthesized in less than 3 min with a straightforward one-step microwave pyrolysis process with a high quantum yield (63.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Physics, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560056, India.
This investigation delves into the extraction of polyphenols from the flowers of Tabebuia rosea using a basic maceration approach with acetone, ethanol, and methanol as solvents. The spectroscopic analysis of the dye obtained confirms the existence of functional groups in the polyphenol extract. The study also explores optoelectronic, fluorescence, and photometric characteristics associated with polyphenols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!