Genome-scale metabolic modeling has been successfully applied to a multitude of microbial systems, thus improving our understanding of their cellular metabolisms. Nevertheless, only a handful of works have been done for describing mammalian cells, particularly mouse, which is one of the important model organisms, providing various opportunities for both biomedical research and biotechnological applications. Presented herein is a genome-scale mouse metabolic model that was systematically reconstructed by improving and expanding the previous generic model based on integrated biochemical and genomic data of Mus musculus. The key features of the updated model include additional information on gene-protein-reaction association, and improved network connectivity through lipid, amino acid, carbohydrate and nucleotide biosynthetic pathways. After examining the model predictability both quantitatively and qualitatively using constraints-based flux analysis, the structural and functional characteristics of the mouse metabolism were investigated by evaluating network statistics/centrality, gene/metabolite essentiality and their correlation. The results revealed that overall mouse metabolic network is topologically dominated by highly connected and bridging metabolites, and functionally by lipid metabolism that most of essential genes and metabolites are from. The current in silico mouse model can be exploited for understanding and characterizing the cellular physiology, identifying potential cell engineering targets for the enhanced production of recombinant proteins and developing diseased state models for drug targeting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b912865d | DOI Listing |
J Mol Cell Cardiol Plus
September 2024
O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia.
Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.
View Article and Find Full Text PDFEndometriosis, though not classified as a carcinogenic condition, shares features such as oxidative stress, migration, invasion, angiogenesis, and inflammation with tumor cells. This study aims to review the effects of flavonoids on these processes and their molecular mechanisms in preventing and treating endometriosis. A comprehensive review was conducted, involving a literature search in online databases using keywords like "endometriosis," "endometrioma," and "flavonoid.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
Background: Intrauterine exposure to gestational diabetes mellitus (GDM) poses significant risks to fetal development and future metabolic health. Despite its clinical importance, the role of microRNAs (miRNAs) in fetoplacental vascular endothelial cell (VEC) programming in the context of GDM remains elusive. This study aims to identify signature miRNA genes involved in this process using bioinformatics analysis via multiple algorithms.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
Purpose: In this study, we aimed to study the role of extracellular proteins as biomarkers associated with newly diagnosed Type 1 diabetes (NT1D) diagnosis and prognosis.
Patients And Methods: We retrieved and analyzed the GSE55098 microarray dataset from the Gene Expression Omnibus (GEO) database. Using R software, we screened out the extracellular protein-differentially expressed genes (EP-DEGs) through several protein-related databases.
Heliyon
January 2025
Department of Mathematics, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan.
Chemical structures may be defined based on their topology, which allows for the organization of molecules and the representation of new structures with specific properties. We use topological indices, which are precise numerical measurements independent of structure, to measure the bonding arrangement of a chemical network. An essential objective of studying topological indices is to collect and alter chemical structure data to develop a mathematical relationship between structures and physico-chemical properties, bio-activities, and associated experimental factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!