The conjugation of porphyrins to metal fragments is a strategy for making new compounds that are expected to combine the phototoxicity and the tumour-localization properties of the porphyrin chromophore with the cytotoxicity of the metal fragment for additive antitumour effect. We report here the preparation of new classes of porphyrin-ruthenium conjugates with potential bio-medical applications. Ruthenium was chosen because several Ru compounds have shown promising anticancer activity. The conjugation with the porphyrin moiety was accomplished either through peripheral pyridyl rings (e.g.meso-4'-tetrapyridylporphyrin, 4'TPyP) or through bpy units (e.g.meso-(p-bpy-phenyl)porphyrins, bpy(n)-PPs, n = 1-4). The number of Ru fragments attached to the porphyrins ranges from 1 to 4 and the total charge of the conjugates from -4 to +8. Different types of peripheral fragments, both Ru(III) and Ru(II), have been used: in some cases they are structurally similar to established anticancer compounds. Examples are [Na](4)[4'TPyP{trans-RuCl(4)(dmso-S)}(4)] (2), that bears four NAMI-type Ru(III) fragments, or [4'TPyP{Ru([9]aneS3)(en)}(4)][CF(3)SO(3)](8) (3) and [bpy(4)-PP{Ru([9]aneS3)(dmso-S)}(4)][CF(3)SO(3)](8) (9) (en = ethane-1,2-diamine, [9]aneS3 = 1,4,7-trithiacyclononane) that have four half-sandwich Ru(II) compounds. The Ru fragments may either contain one or more labile ligands, such as in 2 or in 9, or be coordinatively saturated and substitutionally inert, such as in 3 or in [bpy(4)-PP{Ru([12]aneS4)}(4)][CF(3)SO(3)](8) (11) ([12]aneS4 = 1,4,7,10-tetrathiacyclododecane). Most of the ruthenium-porphyrin conjugates described in this work are soluble--at least moderately--in aqueous solution and are thus suitable for biological investigations, in particular for cytotoxicity and photo-cytotoxicity tests.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b911393bDOI Listing

Publication Analysis

Top Keywords

ruthenium-porphyrin conjugates
8
anticancer activity
8
activity conjugation
8
fragments
5
synthetic strategies
4
strategies ruthenium-porphyrin
4
conjugates
4
conjugates anticancer
4
conjugation porphyrins
4
porphyrins metal
4

Similar Publications

The effect of light irradiation on a nitro-ruthenium porphyrin complex in the induced death of lung cancer cells in two- and three-dimensional cultures: Insights into the effect of nitric oxide.

Dalton Trans

July 2024

Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.

Efforts to find compounds selectively affecting cancer cells while sparing normal ones have continued to grow. Nitric oxide (NO) is critical in physiology and pathology, including cancer. It influences cellular processes like proliferation, apoptosis, and angiogenesis.

View Article and Find Full Text PDF

Two arene ruthenium porphyrin compounds showing interesting photodynamic activity in vitro, [Ru(η(6)-p-Pr(i)C(6)H(4)Me)(PMP)Cl(2)] (PMP=5-(3-pyridyl)-10,15,20-triphenylporphyrin) and [Ru(4)(η(6)-p-Pr(i)C(6)H(4)Me)(4)(PTP)Cl8] (PTP=5,10,15,20-tetra(3-pyridyl)porphyrin) coined Rut1 and Rut4 respectively, have been evaluated in vivo. Porphyrins alone and the arene ruthenium porphyrin derivatives (Rut1 and Rut4) showed comparable spectroscopic and photophysical properties. The in vivo study consisted in selecting the optimal arene ruthenium porphyrin photosensitizer by using an original experimental design approach on mice bearing an ectopic human oral carcinoma xenograft.

View Article and Find Full Text PDF

We report here two novel "extended-arms" porphyrins, TetbpyPP and TedabpyPP, in which four peripheral bpy fragments are connected to the meso positions of the macrocycle through flexible linkers of different length and hydrophilicity. We describe also the new, water-soluble, tetracationic conjugate [TedabpyPP{Ru([9]aneS3)Cl}(4)][Cl](4) (6). Compound 6 belongs to the series of cationic Ru-porphyrin conjugates 1-5, each bearing four peripheral Ru(II) half-sandwich coordination compounds, that we recently prepared as potential photosensitizing chemotherapeutic agents.

View Article and Find Full Text PDF

The conjugation of porphyrins to metal fragments is a strategy for making new compounds that are expected to combine the phototoxicity and the tumour-localization properties of the porphyrin chromophore with the cytotoxicity of the metal fragment for additive antitumour effect. We report here the preparation of new classes of porphyrin-ruthenium conjugates with potential bio-medical applications. Ruthenium was chosen because several Ru compounds have shown promising anticancer activity.

View Article and Find Full Text PDF

The ruthenium(II) porphyrin fluorophore complexes [Ru(TPP)(CO)(Ds-R)] (TPP = tetraphenylporphinato dianion; Ds = dansyl; R = imidazole (im), 1, or thiomorpholine (tm), 2) were synthesized and investigated for their ability to detect nitric oxide (NO) based on fluorescence. The X-ray crystal structures of 1 and 2 were determined. The Ds-im or Ds-tm ligand coordinates to an axial site of the ruthenium(II) center through a nitrogen or sulfur atom, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!