Treatment of trimethylsilylethynylbenzene derivatives with HGaCl(2) afforded products, [C(6)H(6-x){C(H)=C(SiMe(3))GaCl(2)}(x)], in which by a very fast cis/trans-rearrangement the Ga and H atoms occupied opposite sides of the resulting C=C double bonds. The stability of the cis-forms considerably increased upon application of 1,3-dibromo- and pentafluorophenylalkyne derivatives. Two pairs of cis/trans-isomers could be characterized by crystal structure determinations and allow the direct comparison of structural parameters. For the first time an equilibrium was detected between cis- and trans-forms in solution. Treatment of 1,4-di(tert-butylalkynyl)benzene with HAlR(2) (R = CMe(3), CH(2)CMe(3)) afforded cyclophane-type molecules by the release of AlR(3). Only the neopentyl derivative could be isolated and characterized by crystal structure determination. In contrast, the dibromo compound, 1,4-Br(2)-2,5-(Me(3)CC[triple bond]C)(2)C(6)H(2), yielded the simple addition product, C(6)H(2)Br(2){C(AlR(2))=C(H)CMe(3)}(2) (R = CMe(3)). Condensation was hindered in this case by intramolecular Al-Br interactions. Surprisingly, the simple addition product was also isolated from the reaction of 1,4-(Me(3)CC[triple bond]C)(2)C(6)H(4) with the relatively small hydride HAlEt(2). Solid-state NMR spectra of the product revealed strong intermolecular Al-C interactions involving the negatively charged terminal vinylic carbon atoms, to give one-dimensional coordination polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b913568e | DOI Listing |
Adv Sci (Weinh)
January 2025
DP Technology, Beijing, 100080, China.
Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.
View Article and Find Full Text PDFSci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.
Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.
View Article and Find Full Text PDFSci Rep
January 2025
Cellulose and Paper Department, National Research Centre, Cairo, 12622, Egypt.
Compounds containing the piperidine group are highly attractive as building blocks for designing new drugs. Functionalized piperidines are of significant interest due to their prevalence in the pharmaceutical field. Herein, 3-oxo-3-(piperidin-1-yl) propanenitrile has been synthesized, and piperidine-based sodium alginate/poly(vinyl alcohol) films have been prepared.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr city, Cairo, Egypt.
Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!