The role of chemotactic gradients in the immunological response is an area which elicits a lot of attention due to its impact on the outcome of the inflammatory process. Consequently there are numerous standard in vitro designs which attempt to mimic chemotactic gradients, albeit in static conditions, and with no control over the concentration of the chemokine gradient. In recent times the design of the standard chemotaxis assay has incorporated modern microfluidic platforms, computer controlled flow devices and cell tracking software. Assays under fluid flow which use biochips have provided data which highlight the importance of shear stress on cell attachment and migration towards a chemokine gradient. However, the in vivo environment is far more complex in comparison to conventional cell assay chambers. The designs of biochips are therefore in constant flux as advances in technology permit ever greater imitations of in vivo conditions. Researchers are focused on designing a generation of new biochips and enhancing the physiological relevance of the current assays. The challenge is to combine a shear flow with a 3D scaffold containing the endothelial layer and permitting a natural diffusion of chemokines through a tissue-like basal matrix. Here we review the latest range of chemotaxis assays and assess the innovative features of their designs which enable them to better imitate the in vivo environment. We also present some alternative designs that were initially employed in tissue engineering which could potentially be used in the establishment of novel chemotaxis assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b814567a | DOI Listing |
PLoS Pathog
December 2024
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.
Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America.
Human neutrophils are abundant, short-lived leukocytes that turn over at a rate of approximately 1011 cells/day via a constitutive apoptosis program. Certain growth factors, inflammatory mediators and infectious agents can delay apoptosis or induce neutrophils to die by other mechanisms. Nonetheless, a large body of data demonstrates that apoptosis of untreated neutrophils typically ensues within 24 hours of cell isolation and in vitro culture.
View Article and Find Full Text PDFMicroorganisms
December 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.
Root-knot nematodes (RKNs) are pathogens that endanger a wide range of crops and cause serious global agricultural losses. In this study, we investigated metabolites of the endoparasitic fungus YMF1.01751, with the expectation of discovering valuable biocontrol compounds.
View Article and Find Full Text PDFMedComm (2020)
January 2025
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.
View Article and Find Full Text PDFJ Orthop Translat
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!