A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications. | LitMetric

Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications.

Nanotechnology

Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, SE-22100 Lund, Sweden.

Published: February 2010

A novel lab-on-a-chip nanotree enzyme reactor is demonstrated for the detection of acetylcholine. The reactors are intended for use in the RISFET (regional ion sensitive field effect transistor) nanosensor, and are constructed from gold-tipped branched nanorod structures grown on SiN(x)-covered wafers. Two different reactors are shown: one with simple, one-dimensional nanorods and one with branched nanorod structures (nanotrees). Significantly higher enzymatic activity is found for the nanotree reactors than for the nanorod reactors, most likely due to the increased gold surface area and thereby higher enzyme binding capacity. A theoretical calculation is included to show how the enzyme kinetics and hence the sensitivity can be influenced and increased by the control of electrical fields in relation to the active sites of enzymes in an electronic biosensor. The possible effects of electrical fields employed in the RISFET on the function of acetylcholine esterase is investigated using quantum chemical methods, which show that the small electric field strengths used are unlikely to affect enzyme kinetics. Acetylcholine esterase activity is determined using choline oxidase and peroxidase by measuring the amount of choline formed using the chemiluminescent luminol reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/5/055102DOI Listing

Publication Analysis

Top Keywords

acetylcholine esterase
12
branched nanorod
8
nanorod structures
8
enzyme kinetics
8
electrical fields
8
branched nanotrees
4
nanotrees immobilized
4
acetylcholine
4
immobilized acetylcholine
4
esterase nanobiosensor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!